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Systems, Sinusoids, 
the Fourier Transform, and Filters 

David M.W. Evans1, 19 August 2015 

Abstract 

This document presents the frequency-domain knowledge used in the notch-delay solar theo-

ry [Evans, The Notch-Delay Solar Hypothesis, 2016]: linear invariant systems, sinusoids, the 

Fourier transform, simple low pass, delay and notch filters, transfer functions and step re-

sponses, etc. Only information necessary to the theory is presented here. It culminates in de-

veloping the formulae for the range of possible step responses for the system from the Sun’s 

total solar irradiance to the Earth’s surface temperature, given the empirical observation of a 

notch filter in the frequency domain. 
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1 Introduction 

Analysis of systems using sinusoids was of fundamental importance in the technological pro-

gress of the last two centuries.  

Around 1800 a young officer in Napoleon’s army named Joseph Fourier founded a branch of 

mathematics called Fourier analysis, in which functions of time are expressed as sums of si-

nusoidal waves (he was studying heat propagation at the time). Analysis using sinusoids al-

lowed us to understand linear invariant systems (LISs) for the first time. LISs are extremely 
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common in nature, and the key to describing and unlocking their behavior is Fourier analy-

sis—because sinusoids are rather special to LISs. One important application of Fourier analy-

sis was in making sense of disparate phenomena like compasses and making frog’s legs 

twitch with sparks, which culminated in 1861 in Maxwell’s equations, the four equations that 

completely describe electromagnetism. Subsequently engineers and scientists could get down 

to exploiting electromagnetism, and we then had 150 years and counting of new wonders 

based on electricity and magnetism. 

Linear invariant systems (LISs) are simple and ubiquitous systems that have a crucial proper-

ty—if the input to a LIS is a sinusoid at a given frequency, then its output is also a sinusoid at 

the same frequency, though possibly with a different amplitude and phase. The universe is 

chock full of systems that are good approximations to LISs, especially in anything to do with 

electricity and magnetism. Many of the successes in physics and engineering from 1800 are 

based on Fourier analysis—an awful high proportion of modern technology wouldn’t exist 

without this branch of mathematics. Some of the basic ideas of Fourier analysis have seeped 

into our technological consciousness, even of the non-technologically minded, so some of 

what follows in this introduction will be familiar to nearly all readers. 

To get to the notch-delay solar theory from the datasets of solar irradiance and surface tem-

perature data requires some understanding of systems and the frequency domain, which is the 

purpose of this document. 

 A “system” is anything with an input and an output, which is too broad a definition to be of 

much use. Add the conditions of linearity and invariance however, both fairly weak and 

common conditions, and the LIS is specific enough to form a useful construction of wide ap-

plicability. These two conditions single out one class of functions, the sinusoids, as special to 

the analysis of LISs. 

Consider for example free space, or space with not much in it, like the atmosphere. It is a LIS 

for functions whose values are electric and magnetic field values. We are all accustomed to 

the ramifications of this, because we are familiar with the concepts of visible light, radio 

waves, UV, infrared, x-rays, microwaves, and so on—all of which are electromagnetic sinus-

oids at different frequencies. We implicitly analyze the fluctuations in the electric and mag-

netic fields around us into sinusoids at different frequencies, at least conceptually, because it 

is useful to think of them this way: 

 Sinusoids at different frequencies don’t interact with one another. For example light 

waves have no effect on radio waves—shining a torch on a radio doesn’t interfere 

with its reception of a radio station.  

 Sinusoids don’t change frequencies as they go the through free space, air, or indeed 

many other things that are LISs. For example, radio waves are still radio waves when 

they pass through air or walls and so on, and don’t suddenly become light waves or x-

rays. You don’t even need to retune your radio as you walk with it into a building.  

The electric and magnetic fields could be analyzed into square waves or “waves” of some 

other shape—but it wouldn’t be as useful, because the resulting “waves” would always be 
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hopping between “frequencies” (or however you characterize these non-sinusoidal waves), 

and they would be forever interacting with each other in a myriad of ways. Sinusoidal waves 

are much simpler and more useful. The electric and magnetic fields would still be the same 

no matter how you think about them, of course, but using waves other than sinusoids would 

be a silly and confusing way of analyzing their fluctuations. 

We are accustomed to the idea of the electromagnetic spectrum. At the highest frequencies 

are gamma rays and x-rays, and as we descend through the frequencies we come to UV, visi-

ble light, infrared, microwaves, and finally radio waves. The lowest frequency radio waves in 

use today are around 100,000 cycles per second. But what if you keep going to even lower 

frequencies? The same rules about LISs apply, but now we can talk about waves at one cycle 

per second, or one cycle per year, or one cycle per 11 years or per thousand years. These last 

few frequencies are the sinusoids of interest for the climate. The Sun emits these frequencies, 

which we perceive as gradual fluctuations in solar radiation, and technically they are part of 

the electromagnetic spectrum too. Just as infrared doesn’t interact with visible light, sinusoids 

at one cycle per year do not interact cycles at 11 cycles per year in free space, and so on. 

They’re the same phenomena mathematically, just on a different scale. 

In the notch-delay solar theory we turn this branch of mathematics onto the relationship be-

tween total solar irradiance (TSI) and the surface temperatures on Earth.  

Consider the system whose input is TSI and whose output is the surface temperature. It is 

presumably invariant, because its properties are unlikely to change much with time. For small 

perturbations of temperature, such as those over the last few thousand years, it is presumably 

linear—nearly all systems are linear for sufficiently small perturbations, and the climate sys-

tem is widely assumed to be linear for such perturbations. So the system would appear to be a 

LIS, so Fourier methods are applicable. 

The only measured data of interest on the Sun that goes back more than a few decades is the 

count of sunspots. The sunspot record, which starts in 1610 AD, has been converted to TSI 

using models based on the observed relationship between sunspot numbers and TSI over the 

last few decades (we have only been able to measure the tiny change in TSIs from 1978, with 

satellites; before that the TSI was called “the solar constant”). So if we are looking for a solar 

link to global warming on a climatic time scale, the sunspot record, or a TSI reconstruction 

from the sunspots, is about the only source of information we have on what the Sun has been 

doing. 

This document starts with systems and deduces frequency domain behavior, focusing on 

notch, delay, and low pass filters.  

A low pass filter mimics the thermal momentum of the climate system, simply smoothing out 

the impact of changes in heating and cooling from the Sun in accordance with a simple and 

obvious differential equation. Basically changes in incoming energy must accumulate over 

time to change the temperature. 

A notch filter mimics the new and remarkable empirical observation that the frequencies of 

the sunspot cycle are greatly attenuated in the terrestrial surface temperature. A notch filter 
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with the observed amplitudes at the various frequencies can be either causal or non-casual, 

which opens up an intriguing possibility. If non-causal, the response of the filter precedes its 

corresponding stimulus, which is impossible, so the notch filter would have to be accompa-

nied by a delay in order for it to be physically realizable—which suggests the possibility of a 

delay of the order of the notch period. The notch period, corresponding to the average length 

of the sunspot cycle, is ~11 years. Or the notch filter could be causal. In any case, a delay of 

~11 years between changes in TSI and changes in global surface temperature has been ob-

served several times in disparate works, but apparently mostly interpreted by the researchers 

as delays in the propagation of heat around the Earth (though the magnitude of the warmings 

is much greater than the direct warming effect of the changes in TSI).  

The notch-delay hypothesis proposes a hitherto unknown force from the Sun, called force X, 

that warms the Earth by affecting its albedo—how much sunlight is reflected back out to 

space by the clouds and ice etc. without heating the Earth. (Yes, “force X” sounds cartoonish, 

but the inspiration for the cartoons are x-rays, which were so named by Wilhelm Röntgen 

when their cause and nature were unknown.)  Force X is lower when the Sun flips the polari-

ty of its magnetic field, which it does every ~11 years as part of the full solar cycle (~22 

years). The times when force X is lowest exactly coincide with the times when the TSI peaks 

during the solar cycle. The observed notching—the prominent peaks in TSI are not found in 

the Earth’s surface temperature record—is because as warming from TSI peaks, the warming 

from force X is in a trough. They cancel, roughly. The two are in exact synchronicity through 

the irregular solar “cycle”; the notching could only be caused by a solar phenomenon.  

The full solar cycle (called the Hale cycle) is ~22 years on average, which tends to get over-

looked because most solar phenomena are proportional to the square of the Sun’s magnetic 

field (which repeats about every ~11 years). The proposed delay of ~11 years—partly ob-

served, partly suggested by the causality of notch filters, partly deduced by fitting the TSI and 

temperature data—between changes in TSI and changes in force X suggests that force X lags 

half a full solar cycle (180°) behind the TSI. The TSI is the bulk radiation coming from the 

Sun, but the composition of that radiation, particularly in UV and extreme UV, changes over 

the cycle. The notch-delay hypothesis proposes that TSI serves as a leading indicator of force 

X and thus changes in Earth’s surface temperature, because changes in TSI precede changes 

in force X by about one sunspot cycle (half a full solar cycle).  

This delay of ~11 years could explain, for instance, why global temperatures kept rising until 

about 1998 or so after the TSI stopped rising around 1986. Indeed, without the delay, it is dif-

ficult to see how changes in the TSI could be the major influence on surface temperatures. 

A note on housekeeping: The special functions I (indicator), sgn (signum), step, eta, and pha 

(phase) are used sporadically in this document; they are defined in Appendix A. 

2 System Definitions 

A system is anything with an input and an output each describable by a function, while a lin-

ear invariant system (LIS) is a system that is both linear and invariant. 
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2.1 System 
A system is an entity with an input function and an output function. If only functions of time t 

are of interest, then a system is anything whose input is a function of time and whose output 

is a function of time. Thus, a system maps a function to a function (where as a function maps 

a value to a value). If the input function to a system S is INg , then the output function is de-

noted by  INS g . 

 

 

Figure 1: A system. 

2.2 Linear System 
A system is scalar if and only if  

    S ag aS g  (1) 

for all input functions g and all real numbers a. A system is superpositioning if and only if  

      1 2 1 2S g g S g S g    (2) 

for all input functions 1g  and 2.g  A system is linear if and only if it is both scalar and super-

positioning, that is, if and only if 

      1 2 1 2S ag bg aS g bS g    (3) 

for all input functions 1g  and 2g  and for all real numbers a and b. Thus, if the input to a line-

ar system is a linear combination of input functions, the system effectively handles each func-

tion in the combination separately, as if the other functions in the combination were not pre-

sent or had no effect. 

2.3 Invariant System 
A system is invariant if and only if 

      IN OUT IN OUT( ) ( )S g g S t g t t g t       (4) 

for all input functions INg  and real numbers  . Thus a system is time-invariant if time-

shifting the input causes the output to be time-shifted by the same amount. More simply, a 

system is time-invariant if its properties do not change with time. 

Here we have used the notation that a function g can also be denoted by “ ( )t g t ”, which 

means that g maps the argument t to the value ( )g t . By the way, it is common in system dia-

grams and in equations describing systems to omit the “ t ” as understood and to just write 

System
input function output function

SINg  OUT INg S g
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a function as “ ( )g t ”, which leaves the diagram or equation looking as if the system is map-

ping values when it is really mapping functions. 

2.4 Linear Invariant System (LIS) 
A linear invariant system (LIS) is a system that is both linear and invariant. Thus a LIS is sca-

lar, superpositioning, and does not change its properties. A LIS is also called a filter, espe-

cially when its role is seen as shaping the spectrum of a signal passing through the system. 

3 Impulse Responses 

The impulse response of a system is its output function when the input function is an “im-

pulse”, a function that is zero everywhere except when its argument is zero, and with one unit 

of input (that is, the area under the input function is one). It is the basic theoretical tool that 

allows the output of a LIS to be calculated from its input. 

3.1 Impulse 
An impulse is defined as the delta function δ, a special “function” whose value is zero every-

where except at zero, but which when present in an integral behaves as if the area under it is 

one when its argument is zero: 

 
0 0

0 0
( ) ( ) ( ) ( ) ( ) ( ) (0)g t t dt g t t dt g t t dt g  








      (5) 

for any real-valued function g defined on the real numbers .  (There is no actual function 

that can fulfill this last condition, but we pretend there is, perhaps thinking of δ as the limit of 

a series of impulse-like functions appropriate to the given situation. This awkwardness has 

more to do with overcoming shortcomings with integration than because δ is physically unre-

al. In nearly any practical physical context, a series of impulse-like functions is readily dis-

cernible.)    

The shifted delta function ( )t t   is zero for all values of t except  , so integration 

with it “picks out” the value of a function at  : 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )g t t dt g t t dt g t t dt g
 

 
      








         (6) 

for any function g defined on the real numbers. Significantly, the delta function allows us to 

express any function as a linear combination of impulses: 

 ( ) ( ) ( )g t g u t u du



  . (7) 

3.2 Impulse Response 
The impulse response h of a system S is the output function when the input is a delta func-

tion: 

    ( )h S S t t   . (8) 
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3.3 Calculating the Output of a LIS 
Let the input to a LIS S be any function INg . Then the output of S can be expressed as a linear 

combination of shifted impulse responses: 

 

   
 

 

IN IN

IN

IN

( ) ( ) ( )

( ) ( )

( ) ( ) ,

S t g t S t g u t u du

g u S t t u du

g u t h t u du

















 

 

 







   (9) 

where the equalities are respectively by Eq. (7), linearity, and invariance. Thus the value of 

the output function at t is a linear combination of impulse responses: 

 OUT IN IN( ) ( ) ( ) ( ) ( )g t g u h t u du g t v h v dv
 

 
      (10) 

where we have made the substitution v t u   to get the final expression. The integrals in this 

equation are called convolution integrals, and OUTg  is said to be the convolution of INg  and h, 

written as INg h : 

 OUT INg g h  ,     or      OUT IN( ) ( ),g t g h t t   . (11)    

4 Sinusoids 

Sinusoids play a special role with LISs. Here we first define them, then we derive that special 

relationship. Apart from some obvious uses in trigonometry, the significance of sinusoids is 

limited to their special role in analyzing LISs. 

4.1 Definition 
A function is a sinusoid (or is sinusoidal) in some real variable t if it is a cosine or sine func-

tion in t, of the form 

  cos 2t A ft  ,  t . 

The three parameters of the sinusoid are its: 

 Frequency f, in cycles per unit of t. The period of the sinusoid is 1 .f  

 Amplitude A. 

 Phase   (in radians).  
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Figure 2: The sinusoid in t at frequency f, with amplitude A and phase φ.  

4.2 Polar and Rectangular Coordinates 
The sinusoid  cos 2t A ft   is said to be expressed in polar coordinates, because it is 

expressed in terms of an amplitude A and phase  . By basic trigonometry 

      cos 2 cos( )cos 2 sin( )sin 2A ft A ft A ft        . 

The cosine and sine coefficients, or rectangular coordinates, of this sinusoid are cos( )A   and 

sin( )A   respectively.  

The sinusoid    C Scos 2 sin 2t B ft B ft   is said to be expressed in rectangular coordi-

nates, because it is expressed in terms of a cosine coefficient CB  and a sine coefficient SB . 

By basic trigonometry and the phase function (Appendix A.5),  

      2 2

C S C S C Scos 2 sin 2 cos 2 pha( , )B ft B ft B B ft B B      . 

The amplitude and phase, or polar coordinates, of the sinusoid are thus 
2 2

C SB B  and 

C Spha( , )B B  respectively. 

4.3 Sinusoids and all LISs 
Consider an arbitrary LIS S whose input and outputs are functions of t, and whose impulse 

response is h. Let the input function be an arbitrary sinusoid in time t at frequency 0f , with 

amplitude A and phase  , namely 

  IN 0( ) cos 2t g t A f t   . (12) 

By Eq. (10), the value of the output function at t is 

0 1 2 3 4 5 6

-1

1

2
2 f



 1 f
Period

Amplitude

A

 cos 2A ft 

t

Amplitude

A
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 

       

   

   

OUT IN

0

0 0 0 0

0 0

0 0

( ) ( ) ( )

cos 2 ( ) ( )

cos 2 cos 2 sin 2 sin 2 ( )

cos 2 cos 2 ( )

sin 2 sin 2 ( ) .

g t g t v h v dv

A f t v h v dv

A f t f v f t f v h v dv

A f t f v h v dv

A f t f v h v dv

 

     

  

  





















 

  

     

 

 











 

(13)

 

The integrals in the last expression, namely  

 
 

 

0

0

cos 2 ( )

sin 2 ( ) ,

C f v h v dv

S f v h v dv




















 (14) 

evaluate to numbers that are independent of t, so they are constants. Thus  

    OUT 0 0( ) cos 2 sin 2g t AC f t AS f t       . (15) 

Convert this sinusoid to polar coordinates by letting  

 
2 2cos ,

sin , pha( , ).

C C S

S C S

  

  

  

 
 (16) 

Hence 

 
       

  
OUT 0 0

0

( ) cos cos 2 sin sin 2

cos 2 .

g t A f t A f t

A f t

       

   

   

  
 

(17)
 

From this we can draw several notable conclusions: 

1. The output function is also a sinusoid in t at frequency 0f . 

2. The amplitude of the output sinusoid is equal to the amplitude of the input sinusoid 

multiplied by  . 

3. The phase of the output sinusoid is equal to the phase of the input sinusoid plus . 

4.   and   are independent of the amplitude and phase of the input sinusoid, so they 

apply to all input sinusoids at frequency 0.f  

5. The behavior of the LIS for input sinusoids of frequency f can be characterized by just 

two real numbers, an amplitude multiplier   and a phase addend  . 

If the input to any LIS is a sinusoid at frequency 0f , then its output is also a sinusoid at fre-

quency 0f  (thus, the sinusoids at frequency 0f  are eigenfunctions of all linear invariant sys-

tems). The output sinusoid may have a different amplitude and phase to the input sinusoid, 

but it is guaranteed to be a sinusoid with frequency 0f . Furthermore, a given LIS always 

“transfers” a sinusoid at a given frequency from the input to the output with the same ampli-

tude amplification and same phase shift (hence the “transfer function” terminology, below).  
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In general, if the input to a LIS is a non-sinusoidal function (that remains finite as its argu-

ment becomes infinite) then the output is not guaranteed to be any particular function. For 

example, if the input function to an arbitrary LIS is a square wave then the output function 

tends to be something like a square wave but with the corners rounded off—so it is no longer 

a square wave. The sinusoids, however, are special. 

By the linearity of a LIS, if the input function of a LIS is a sum of sinusoids, each at a differ-

ent frequency, then the output function, by Eq. (17), is also a sum of sinusoids at the same 

frequencies, where the relationship between the output and input sinusoids at any given fre-

quency is determined by just the amplitude amplification and phase shift of the LIS at that 

frequency. So for input functions that are sums of sinusoids, we can calculate the output func-

tion just from knowing the how the LIS changes amplitudes and phases at each frequency. 

The Fourier transform (section 5, below) shows that many functions of physical interest can 

be expressed as just such a sum of sinusoids, one at each frequency—so we can calculate the 

output function of a LIS just from its amplitude- and phase-change properties.  

Given the ubiquity of LISs, this explains why sinusoids are of great interest to science and 

technology. The very general notion of a system, with the mild constraints of linearity and 

invariance, turns out to be amenable to a simple analysis where the behavior of the system 

can be summarized merely by an amplitude and phase at each frequency.   

4.4 Complex Numbers as an Accounting Tool for Sinusoids 
Complex numbers can be viewed as an accounting system that might have been invented spe-

cifically for sinusoids and LISs (historically it wasn’t, but that’s just an unfortunate accident). 

In complex multiplication, amplitudes are multiplied and phases are added—just like the ef-

fect of a LIS on an input sinusoid as per Eq. (17).  

Let us represent a sinusoid by the complex number that has the same amplitude and phase (it 

could hardly get any simpler than that): 

  0cos 2 exp( ) cos siniA f t Ae A i A i A          (18) 

The right hand side of this correspondence is a complex exponential, in polar coordinates as 
iAe 

 and in rectangular coordinates as cos sinA i A  . The crucial ingredient is the imagi-

nary number i, the square root of −1. Don’t take the square root of −1 literally, because it 

doesn’t exist; instead, think of i as merely combining two real numbers into a single entity, a 

“complex” number, with a property that is very useful in this context, namely,
2i  equals −1. 

To continue section 4.3, let us represent the effect of the LIS at frequency 0f  by the complex 

number with the amplitude and phase of the changes it causes at that frequency, namely 
ie  . 

The (complex) product of this with the complex number in Eq. (18) is 

  exp ( )i iAe e A i       (19) 

(multiply the amplitudes and add the phases). By virtue of having the same amplitude and 

phase, this is the complex number that represents the output sinusoid calculated by Eq. (17) 

when the input sinusoid is that in Eq. (18). Thus the action of the LIS in transferring the input 
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sinusoid in Eq. (12)  to the output sinusoid in Eq. (17) at the same frequency can by repre-

sented by a complex multiplication. Similarly, adding complex numbers corresponds to add-

ing sinusoids with the same frequency. So we can dispense with calculating explicitly with 

sinusoidal functions, and instead just calculate with the complex numbers that represent 

them—much simpler. 

5 The Fourier Transform (FT) 

The Fourier transform is a tool for analyzing a function of a continuous real variable (such as 

time) into a sum of sinusoids, called the spectrum of the function. 

5.1 FTs of Complex-Valued Functions 
Let g be a function defined on all real numbers (such as for all time). Let g be complex-

valued (because complex numbers are an accounting tool for representing sinusoids, this is 

somewhat unmotivated and even nonsensical, but it is traditional). Let ( )g t  and ( )g t  re-

main finite as t becomes infinite. Let g not be “extremely” discontinuous (or the integrals 

here do not converge; this is generally not an issue with “real-world” functions). Let the 

complex Fourier transform of g be the complex-valued function F. Let the argument of F 

vary over all the real numbers and be called the frequency f. 

Synthesis: 

  ( ) ( )exp 2g t F f i ft df



     for t . (20) 

Analysis:  

  ( ) ( )exp 2F f g t i ft dt



    for f  . (21) 

 
 
We write the real and imaginary parts of F as realF  and imgF  (which are real-valued):   

 real img( ) ( ) ( )F f F f iF f  . (22) 

The relationship between g and its (complex-valued) complex Fourier transform F can be ex-

pressed by the complex Fourier transform operator F: 

   ( )g f F fF     or      real img( ) ( ) ( )g f F f iF f F . (23) 

 
 

The Fourier transform synthesizes g as a sum of complex exponentials, typically 

      exp 2 cos 2 sin 2i ft ft i ft     , (24) 

one at each real frequency f  (though see Figure 2: a sinusoid with a negative frequency has 

the same period as a sinusoid with the absolute value of that frequency, which is ambiguous). 

Thus, after applying the complex multiplication in its integrand, the synthesis integral synthe-
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sizes g as a sum of sinusoids. The units of frequency are cycles per unit of t; for example, if t 

is measured in years then f is measured in cycles per year (cycles are dimensionless). 

We can calculate F from g (by analysis, or the forward transform) and g from F (by synthe-

sis, or the inverse transform), so the information in the function can be fully represented ei-

ther as g (in which case we say it is in the time domain, if g is a function of time) or as F (in 

the frequency domain). The Fourier transform is thus invertible. 

We haven’t proved that, given the definition of the Fourier transform in the analysis Eq. (21), 

the Fourier transform synthesis in Eq. (20) is correct. There is an intricate mathematical 

proof, reasonably well-known, that we won’t reproduce here. 

5.2 FTs of Real-Valued Functions 
Almost all functions of interest are real-valued, and the Fourier transform becomes simpler 

when g is real-valued. Everything above about complex-valued functions still applies, be-

cause a real-valued function is just a complex-valued function whose imaginary part is zero.  

If g is real-valued then its Fourier transform is complex-valued, but by Eq. (21) 

 
real real

img img

( ) ( )
0,

( ) ( )

F f F f
f

F f F f

  


   
 (25) 

so the values of the Fourier transform at negative frequencies are redundant.  

It is easier to work with Fourier transforms of real-valued functions by focusing on their co-

sine and sine parts, denoted here by CB  and SB  respectively. (The “B” is for Professor 

Ronald Bracewell, late of Electrical Engineering at Stanford University, who played a large 

part in the modern revival of the Fourier transform, applied it in radio astronomy and image 

reconstruction, and wrote an influential text on Fourier transforms in 1978.) Further, we need 

only consider non-negative frequencies, because the values of the Fourier transform at nega-

tive frequencies give you no extra information about the spectrum of a real-valued function. 

These two policies remove the analysis of imaginary functions and redundant (aka aliased) 

frequencies from the picture, allowing us to focus just on the essentials without stumbling 

over irrelevant symmetries and unnecessary complications. Finally, we use the eta function   

for taking care of the inevitable factors of two:   is one, except that it is zero when f is zero 

(Appendix A;   is the number of normal or non-edge frequencies). Now we can define the 

real Fourier transform (or Bracewell transform) of a real-valued function g: 

Synthesis: 

    C S
0

( ) ( )cos 2 ( )sin 2g t B f ft B f ft df 


       for t . (26) 

Analysis: 

 
 

 

C

S

( ) 2 ( )cos 2
    for 0

( ) 2 ( )sin 2

B f g t ft dt
f

B f g t ft dt

















 


 





. (27) 
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The cosine and sine components CB  and SB  of the real Fourier transform are often combined 

into a complex number, giving a single analysis equation: 

  C S( ) ( ) ( ) 2 ( )exp 2B f B f iB f g t i ft dt 



    ,   0f  . (28) 

The synthesis equation (26) then becomes a dot product (that is, the sum of product of corre-

sponding components): 

  
0

( ) ( ) exp 2g t B f i ft df


  ,   t . (29) 

The dot product expands as in Eq. (26) in rectangular coordinates, while in polar coordinates 

    exp 2 cos 2iAe i ft A ft      ,    ,A  . (30) 

The relationship between g and its (complex-valued) real Fourier transform B can be ex-

pressed by the real Fourier transform operator B:  

   ( )g f B fB ,   or       ( ) ( ) 2 ( )exp 2g f B f g t i ft dt 



  B . (31) 

For a real-valued function, the relationship between its complex Fourier transform and its real 

Fourier transform is 

 
C real

S img

( ) 2 ( )
    for 0

( ) 2 ( )

B f F f
f

B f F f





 


  

, (32) 

or 

 *( ) 2 ( )B f F f    for 0f   (33) 

where the asterisk superscript indicates the complex conjugate (which means change the sign 

of i). (The 2  factor may be regarded as “folding” the negative part of the real number line 

representing frequency over onto the positive part. So the complex conjugate is an arbitrary 

sign change in the frequency in Eq. (21).) 

The synthesis explicitly expresses g as a sum of sinusoids, one at each (non-negative) fre-

quency (see Fig. 2; a sinusoid with a positive frequency has an unambiguous period). 

5.3 FTs of Time Series 
Real-world data typically comes as a series, sampled from an underlying function of a con-

tinuous variable (typically time, in which case the series is a “time series”). There are “dis-

crete” versions of the Fourier transform to analyze such a time series into a sum of sinusoidal 

time series, which approximate the Fourier transform of the underlying function of a continu-

ous variable—see [Evans, The Optimal Fourier Transform (OFT), 2013]. We are only con-

cerned with functions of a continuous real variable in this document.  

http://jonova.s3.amazonaws.com/cfa/optimal-fourier-transform.pdf
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5.4 FTs of Derivatives and Integrals 
The Fourier transforms of integrals and derivatives of a function are easily calculated from 

the Fourier transform of the function, which is invaluable for solving differential equations. 

Let a real-valued function g have a real Fourier transform B, as per Eq. (28). Apply a deriva-

tive to the Fourier synthesis in Eq. (29): 

 

    
   

   

C S

C S

S C

( ) ( )cos 2 ( )sin 2

( ) cos 2 ( ) sin 2

2 ( )cos 2 2 ( )sin 2 .

d d
g t B f ft B f ft df

dt dt

d d
B f ft B f ft df

dt dt

f B f ft f B f ft df

 

 

   













   

 
  

 

   







 

The last expression is the FT synthesis integral for dg dt , and  C Si B iB   equals S CB iB , 

so the real Fourier transform of  dg dt  is 2 ( )i fB f . Thus 

  ( ) ( 2 ) ( )
n

n

n

d g
f i f g f

dt


 
  

 
B B ,   for 0,1,2,...n  , 0f  . (34) 

Now apply an integral to the Fourier synthesis: 

 

   

   

   

C S

C S

S C

( ) ( )cos 2 ( )sin 2

( )cos 2 ( )sin 2

( ) ( )
cos 2 sin 2 .

2 2

g t dt B f ft B f ft df dt

B f ft dt B f ft dt df

B f B f
ft ft df

f f

 

 

 
 













      

  
 

 
   

 

  

  



 

This last is the FT synthesis integral for ( )g t dt , and  1

C S( )i B iB   equals  C Si B iB  

which equals S CB iB  , so the real Fourier transform of ( )g t dt  is 1( 2 ) ( )i f B f  . Thus 

    1( ) ( ) ( 2 ) ( )n

i ng t dt dt f i f g f   B B ,   for 0,1,2,...n  , 0f  . (35) 

The Fourier transform expresses g as a sum of sinusoids. Each time we differentiate or inte-

grate g then we differentiate or integrate all those sinusoids, which all shift one quarter cycle 

(from cosine to negative sine with differentiation, or cosine to sine with integration) and get 

scaled by 2 f  (differentiation) or 1(2 )f   (integration). 

5.5 FTs of Delayed Functions 
Consider the delayed function ( )t g t d  for some delay d that is independent of t. Its real 

Fourier transform is 

 

   

   

 

2 ( )exp 2 2 ( )exp 2 ( )

exp 2 2 ( )exp 2

exp 2 ( ) ,

g t d i ft dt g u i f u d du

i fd g u i fu du

i fd B f

 



 

 



 

 





  





 

  

where B is the real Fourier transform of g, and we made the substitution u t d  . Thus 
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    ( ) ( ) 2 ( )t g t d f i fd g f B B .  (36) 

5.6 LISs, and the Time and Frequency Domains 
In physics and engineering it is common that the input and output of a system are connected 

by a linear differential equation, in which the input and output are functions of time and the 

derivatives are with respect to time. Because the equation is in terms of time, and contains no 

explicit mention of frequency, this sort of description and analysis is said to be “in the time 

domain”. 

A system described by a linear differential equation is linear. If in addition the equation’s co-

efficients are independent of time (constant with respect to time), the system is also invariant 

and therefore a LIS.  

If the system is a LIS then frequency domain methods are appropriate: replace each function 

of time with its equivalent sum of sinusoids, one sinusoid in time at each frequency, using 

Fourier analysis. Then we can analyze the effect of the LIS (or linear differential equation) at 

each frequency in isolation, because what happens at other frequencies has no effect. Calcu-

late the output sinusoid at each frequency, then add them all together to form the output func-

tion. Such an analysis, using explicit frequencies, and where only the sinusoids are dependent 

on time, is said to take place “in the frequency domain”. Often the sinusoids are not even ex-

plicitly stated, but are merely implicit in the analysis as written. 

To move the description of the LIS from the time domain to the frequency domain, take the 

Fourier transform of all functions of time—with the analysis integral—which converts them 

to functions of frequency. To move back to the time domain, apply the inverse Fourier trans-

form to the functions of frequency—with the synthesis integral, thereby adding the sinusoids. 

It is easier to solve linear differential equations in the frequency domain than in the time do-

main, essentially because the derivatives or integrals of sinusoids are just other sinusoids at 

the same frequency. In areas like electrical engineering, where circuits are typically LISs de-

scribed by elaborate linear differential equations, equations are routinely solved by moving 

them to the frequency domain using the Fourier transform (or the Laplace transform, a gener-

alization that analyzes functions into sums of exponentially growing sinusoids). The sinus-

oids are represented as complex numbers, while differentiation and integration become mul-

tiplication and division by a complex variable—so the linear differential equations become 

polynomials, which are much simpler to solve. 

5.7 Taking the FT of Both Sides of an Equation 
Suppose an equation says two functions of the same real variable t are equal, either 

 1 2g g ,    or    1 2( ) ( )g t g t  for t . (37) 

To “take the Fourier transform of both sides” means taking the Fourier transform of the func-

tion on each side and equating their values at each frequency: 

    1 2( ) ( )g f g fB B ,   0f  . (38) 
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6 Transfer Functions 

The transfer function of a LIS consists of the amplitude amplifications and phase shifts that 

the LIS causes at each frequency, encoded as a Fourier transform. It is also the Fourier trans-

form of the impulse function (to within a scaling by a factor of two). 

6.1 Transfer Function of a LIS 
Consider an arbitrary LIS S whose input and outputs are functions of t, and whose impulse 

response is h, as in section 4.3. The (real) Fourier transform of the input sinusoid in Eq. (12), 

namely  0cos 2t A f t  , is 

  IN 0( ) ( )ig f Ae f f B ,   0f  , (39) 

because 

 
C 0

S 0

( ) cos( ) ( )
    for 0

( ) sin( ) ( )

B f A f f
f

B f A f f

 

 

  


  
. (40) 

The output function is then the one in Eq. (17), whose Fourier transform is, similarly, 

   ( )

OUT 0( ) ( )ig f A e f f   B ,   0f  . (41) 

The behavior of the LIS at frequency 0f  is determined entirely by   and  , so it is com-

pletely captured by the (complex) ratio of the values of the Fourier transforms of the output to 

the input: 

 
 

 

( )
OUT 0

IN 0

( )

( )

i
i

i

g f A e
e

g f Ae

 









 
B

B
. (42) 

Notice that this (complex) value is independent of the amplitude and phase of the input si-

nusoid, so it applies to all non-zero input sinusoids. The value is specific to the frequency 0f , 

so we can construct a function of frequency out of the values in Eq. (42) as 0f  varies. Ac-

cordingly, we define the transfer function of the LIS S as 

 
 

 
OUT

IN

( )
( )

( )

g f
H f

g f


B

B
,   0f  , (43) 

for any input function INg  whose sinusoid at each frequency is non-zero (to avoid zeroes in 

the denominator in Eq. (42)). The value of the LIS’s transfer function at any frequency 0f  

tells us how the LIS “transfers” the input sinusoid to the output at 0f . Because any function 

of interest is the sum of one sinusoid at each frequency (Eq. (26)), the transfer function com-

pletely characterizes the LIS.  

With the transfer function, for any input function INg  we can compute the spectrum of the 

output function OUTg : 

    OUT IN( ) ( ) ( )g f H f g fB B ,   0f  . (44) 
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Figure 3: A LIS in the frequency domain. H is the transfer function of the LIS. The real Fourier transforms and the 

transfer function are each complex-valued functions of non-negative frequency.  

Whereas a linear differential equation is the usual method of describing a system in the time 

domain, a transfer function is the usual description of a system in the frequency domain. 

6.2 Transfer Function and Impulse Response 
The transfer function H from the previous sub-section is a complex-valued function of fre-

quency so it is a Fourier transform, but of what? Consider the Fourier transform of the LIS’s 

impulse function h. Its cosine and sine components at frequency 0f  are, comparing Eq.s (27) 

and  (14),  

 
0

0

( )

C 0

0( )

S 0

( ) 2
    for 0

( ) 2

f

f

H f C
f

H f S





 


 
, (45) 

so the real Fourier transform of h is 

  ( ) 2 ( )h f H fB ,   0f  . (46)  

(With the complex Fourier transform, the 2  frequency-folding factor is not needed because 

frequencies may be negative:  ( ) ( )h f H fF , f  .) 

6.3 Convolution 
Taking the Fourier transform of both sides of the convolution in Eq. (10),  

 

   
 

 

   

   

IN IN

IN

IN

IN

IN

( ) ( ) ( ) ( )

2 ( ) ( ) exp 2

2 ( ) ( )exp 2

2 ( )exp 2 ( )exp 2 ( )

2 ( )exp 2 2 ( )

g h f g u h t u du f

g u h t u du i ft dt

g u h t u i ft dt du

g u i fu h t u i f t u dt du

g u i fu h f du







 





 







 

 

 

 

 

 





  

  
  
  
  

   
  

   



 

 

 

B B

B

   IN2 ( ) ( ) ,h f g f






B B

 (47) 

assuming INg  and h are sufficiently well-behaved to swap the order of the integrals. Thus, 

summarizing Eq.s  (10), (44), and (46) in the frequency domain, 

              OUT IN IN IN( ) ( ) 2 ( ) ( ) ( ) ( )g f g h f h f g f H f g f   B B B B B ,   0f  , (48) 

or, where the real Fourier transforms of INg  and OUTg  are ING  and OUTG ,  

    OUT IN IN IN( ) ( ) 2 ( ) ( ) ( )G f g h f h G f H f G f   B B ,   0f  . (49) 

Linear Invariant
System

Real Fourier transform
of the input function

Real Fourier transform
of the output function

 INgB  INH gBH



 18 

 

More generally, convolution in the time domain corresponds to (complex) multiplication in 

the frequency domain: 

    1 2 1 2 1 2( ) ( ) ( ) ( ) 2 ( ) ( )g g f g u g t u du f G f G f





   B B ,   0f  , (50) 

for any well-behaved functions 1g  and 2g  with real Fourier transforms 1G  and 2G . The re-

sult is the same, without the frequency-folding factor, if complex FTs are used instead:  

    1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )g g f g u g t u du f F f F f



   F F ,   f  , (51) 

where the complex Fourier transforms of 1g  and 2g  are 1F  and 2F . 

6.4 Cascaded LISs 
Two systems are in cascade if the output from one is the input to the other. The transfer func-

tion of the cascade is equal to the product of the transfer functions of the individual systems. 

Complex multiplication is commutative and associative, so the order of the individual sys-

tems within the combined system makes no difference to the transfer function of the com-

bined system. 

 

 

Figure 4: Two LISs in cascade, in the frequency domain. Each LIS is marked with its transfer function. The transfer 

function of the cascade of the two systems (in either order) is H1H2. 

7 Step Responses 

The step response of a LIS is its output function when its input is a step function (see Appen-

dix A.3), that is, if the input steps up from zero to one at time 0. The step response of a LIS is 

usually more intuitive and easier to verify experimentally than an impulse response, and is 

useful for understanding and comparing LISs. The output of a system can be computed from 

its step response and the input function. 

7.1 Step Response 
The (unit) step response of a system S is the output function when the input function is a unit 

step function, namely 

    step step( )r S S t t  .  

LIS 1 LIS 2

Combined LIS

Real
Fourier transform

of the
input function

 INgB

Real
Fourier transform

of the
output function

1H 2H 1 INH gB  1 2 INH H gB

1 2H H
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The value of any input function INg  at any time t can be expressed as a linear combination of 

unit steps: 

 IN
IN IN( ) step( )

t
dg

g t dg t u du
du



 

    . (52) 

If S is linear and invariant, then the output function of S is thus 

 

 

 

 

IN
IN

IN

IN

( ) step( )

step( )

( ) ,

dg
S t g t S t t u du

du

dg
S t t u du

du

dg
t r t u du

du













 
  

 

 

 







   

where the first line is by Eq. (52), the second by linearity, and the third by invariance. Thus 

the value of the output function at time t is the same linear combination of step responses: 

 IN
OUT ( ) ( )

dg
g t r t u du

du





  . (53) 

7.2 Causality 
A causal system is one where the variable of the input and output functions is time and whose 

step response is zero for all times before the step in the input occurs. That is, a system is 

causal if the effect comes after the cause. Non-causal systems are not physically realizable. 

By Eq. (53), the output of a causal system depends on past and current inputs but not on fu-

ture inputs. 

7.3 Calculating the Step Response from the Transfer Function 
To calculate the step response r of a LIS from its transfer function H, apply Eq. (44) with the 

input function INg  as the step function: 

   1 stepr HB B  (54) 

(assuming the output of the LIS is real-valued when the input is a step function.) To see this 

in more detail, first compute the real Fourier transform of the unit step function: 

  
( )

step
2

f i

f




 B ,   0f  . (55) 

(To confirm this, apply the synthesis integral in Eq. (26):  
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     
 

C S

0 0

sin 2( )
( )cos 2 ( )sin 2 cos 2

2

1 1
sgn( )

2 2
step( ), ,

ftf
B f ft B f ft df ft df

f

t

t t


  



   
      

 

 

 

 

 

(56)

 

by the definite integral [Gradshteyn & Ryzhik, p. 405: 3.721#1 & pp.xliii].) Second, letting 

the transfer function of the LIS be expressed as  

 
Real Img( ) ( ) ( )H f H f iH f  ,   0f  , (57) 

where  RealH  and ImgH  are real-valued, the real Fourier transform of the step response is  

       Img ImgReal Real
( ) ( ) ( )( ) ( ) ( )

step ( )
2 2

H f H f fH f f H f
H f i

f f



 

   
      
   

B ,  0f  .  (58) 

Third, the step response of the LIS is 

 

  
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 

   

1

ImgReal

0 Img Real

Real ImgReal

0

( ) step ( )

( )( ) ( )
cos 2

2

( ) ( ) ( )
sin 2

2

( )sin 2 ( )cos 2(0)
, .

2

r t H t

H fH f f
ft

f
df

H f f H f
ft

f

H f ft H f ftH
df t

f











 











  
  

   
  

  
   
  


  





B B

 

(59)

 

Note that this becomes Eq. (56) for the identity LIS, for which H is unity for all frequencies. 

Note also that, because  cos 2 ft f   is increasing without limit, Img ( )H f  must approach 

zero fast as f approaches zero from above. Finally, note that if Img ( )H f  is non-zero then the 

LIS changes the phase of the sinusoids at f, and it will contribute a term to the integral that is 

an even function in t (symmetric around zero t)—thus, unless the phase changes caused by 

the LIS are carefully arranged to cancel for negative t in the integral, the LIS will be non-

causal. 

Alternatively, in polar coordinates: 

  
 exp 2( )

step
2

if

f




 B ,   0f   (60) 

  ( ) ( )exp ( )H HH f A f i f ,   0f   (61) 

  
 

  
( ) ( )exp ( ) ( )

step ( ) exp ( ) 2
2

H H H
H

f A f i f A f
H f i f

f

 
 


  B ,   0f   (62) 

    
0

(0) ( )
( ) cos (0) sin 2 ( ) , .

2

H H
H H

A A f
r t ft f df t

f
  





     (63) 
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8 Low Pass Filters (LPFs) 

Consider the following differential equation, which describes a LIS that arises in a wide vari-

ety of physical contexts: 

 
OUT IN OUT

B

1

2

d
g wg g

f dt
   (64) 

where INg  and OUTg  are functions of a continuous variable t, while Bf  and w are constants 

(independent of t), and B 0.f   Taking the real Fourier transform of both sides and applying 

Eq. (34), 

      OUT IN OUT

B

2
( ) ( ) ( )

2

i f
g f w g f g f

f






 B B B ,    0f  , (65) 

so the transfer function of the system is 

 
 

   
OUT

LPF

IN B

( )
( )

( ) 1

g f w
H f

g f i f f
 



B

B
,    0f  . (66) 

This is the transfer function of a first order low pass filter (that is, with one pole), the simplest 

type of low pass filter, such as an RC filter in electronics. See Fig. 5. 

 

 

Figure 5: Transfer function of a low pass filter. Note the logarithmic scales on the axes. A low pass filter “passes” 

sinusoids with frequencies below fB and “blocks” those above (the higher the frequency, the more it is blocked). 
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At low frequencies  

 LPF( )H f w     for Bf f , (67) 

so all the sinusoids in the input appear in the output amplified by the factor k. In the limit as 

the frequency goes to zero the derivatives with respect to t go to zero (because everything 

changes only very slowly), in which case Eq. (64) simply says that OUTg  is equal to INwg , 

which agrees with Eq. (67). w is the low frequency value. At high frequencies 

 
 LPF

B

( )
i w

H f
f f

    for Bf f , (68) 

so each sinusoid in the input is attenuated by Bwg f  and lagged by 90° (for example, cosine 

becomes sine) as it makes its way to the output. Because low-frequency sinusoids pass 

through unattenuated while high frequency sinusoids are not passed, this LIS is known as a 

(first order) low pass filter. The behavior switches from passing to not passing centered on 

the frequency Bf , which is known as the break frequency. The effect of a low pass filter is to 

smooth a function: the high frequency sinusoids provide the sharply-changing features or 

sharp corners of a function, and it is these that are most attenuated.  

To compute the step response we first reveal the real and imaginary parts of the transfer func-

tion: 

 
 

 
 

B B
LPF B2 2 2

BB

1
( )

1

w i f f w f
H f f i f

f ff f

    


,   0f  . (69) 

Then by Eq. (59) the step response is    

 

   
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p( )exp 2

1 exp 2 step( ),

t t f

w f t t







    

 

(70)

 

by the definite integrals [Gradshteyn & Ryzhik, p. 408: 3.725#1 & 3.723#2]. Thus the step 

response is just a step with the corner at zero t smoothed off, and more smoothing when Bf  is 

smaller (that is, fewer higher frequency sinusoids are passed). The step response is zero for t 

less than 0, so the low pass filter is causal. See Fig. 6. 
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Figure 6: Step response of a low pass filter (the one in Fig. 5). A low pass filter smooths off sharp corners. 

The impulse response of the low pass filter is, by Eq. (46), 
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(71)

 

by the definite integrals [Gradshteyn & Ryzhik, pp. 406: 3.723#2,#3]. 

9 Delay Filters 

Consider a LIS whose output OUTg  is simply a delayed version of the input INg  (the naming 

of the filter assumes both are functions of time), for which 

 OUT IN( ) ( )g t g t d  ,    t , (72) 

where the delay d is any real number. Taking the Fourier transform of both sides and apply-

ing Eq. (36) gives the transfer function as 
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 

 
 OUT

Delay

IN

( )
( ) exp 2

( )

g f
H f i fd

g f
 

B

B
,  0f  . (73) 

The amplitude of 
DelayH  is always unity, but the phases are modified in proportion to the fre-

quency and the delay. See Fig. 7.  

 

 

Figure 7: The transfer function of a delay filter. The amplitude is unity at al frequencies, but the phase change accel-

erates as frequency increases (the graphics fail to keep up; it should show the phase “wrapping around”). 

To compute the step function, first split the transfer function into its real and imaginary parts: 

    Delay ( ) cos 2 sin 2H f fd i fd   ,   0f  . (74) 

Then by Eq. (59) and twelve applications of [Gradshteyn & Ryzhik, p. 414: 3.741#2] the step 

response is    
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(75)
 

which of course is a delayed step. It is causal if and only if d is non-negative. See Fig. 8. 

 

 

Figure 8:  The step response of a delay filter is simply a step function delayed. 
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The impulse response of the delay filter is, by Eq. (46), 
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(76)

 

where the last equality is justified by symmetry of the integrand in f around zero and that the 

impulse response of the identity system (when d is zero) is the impulse function. 

10 Notch Filters 

A notch filter is a system that allows low frequency sinusoids and high frequency sinusoids to 

pass through with little attenuation, but severely attenuates sinusoids with frequencies around 

the notch frequency. Also known as a “band-reject” or “band-stop” filter, the amplitude of its 

transfer function is a near-constant function of frequency, except that near the notch frequen-

cy it dips sharply—graphically it looks like a notch. There are many types of notch filters, but 

here we are only interested in finding the simplest notch filter, its transfer function, and 

whether or not it is causal. 

10.1 The Simplest LIS that is a Notch Filter 

10.1.1 A Generic LIS 

A generic LIS can be described in the time domain as a linear differential equation whose co-

efficients are constant (and thus time invariant): 

 OUT IN

0 0

( ) ( )
j jn m

j jj j
j j

d d
a g t b g t

dt dt 

  , (77) 

where INg  and OUTg  are real-valued input and output functions of time t, m and n are positive 

integers, and the ja  and jb  coefficients are real constants. Taking the Fourier transform of 

both sides and applying Eq. (34),  
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   B B ,  0f  , (78)   

so the transfer function of the system is  
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As f becomes much higher or lower than the notch frequency, the only way that ( )H f  can 

remain roughly constant is if m equals n. For example, as f increases without limit 

 lim ( ) lim ( 2 )m nm

f f
n

b
H f i f

a
 

 
 . (80) 

So the transfer function of a notch filter is the ratio of polynomials of the same degree in f. 

10.1.2 A First-Order LIS Is Too Simple to Be a Notch Filter 

Is a first-order system ( 1m n  ) sufficient to build a notch? Eq. (79) becomes 

 0 1 0 H

0 1 0 L

2 1
( )

2 1

b b i f b i f f
H f

a a i f a i f f





 
  

 
,    0f  , (81) 

where 

 0
L

12

a
f

a
      and     0

H

12

b
f

b
  

are the low and high break frequencies. This transfer function describes a low pass filter with 

break frequency Lf  in cascade with a high pass filter with break frequency Hf —which 

means the amplitude of the transfer function on a log-log graph bends down 45° at Lf  and 

bends up 45° at Hf  (Fig. 9). This is not enough bending to create a notch filter (Fig. 9), not 

even one with a blunt notch, so we need a more complicated LIS. 

 

 

Figure 9: A LIS whose transfer function is a ratio of first-degree polynomials. There are not enough “bends” in the 

amplitude to be a notch filter—have only two bends. 
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10.1.3 A Second-Order LIS Can Be a Notch Filter 

Is a second-order system ( 2m n  ) sufficient for a notch? Eq. (79) becomes 

 
   

   

2

0 1 2

2

0 1 2

2 2
( )

2 2

b b i f b i f
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a a i f a i f

 

 

   

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, 0f  .  (82) 

We factorize the quadratic polynomials in the numerator and denominator, treating 2i f  

as the polynomial variables (possibly different in the numerator and denominator): 

 
1 2

1 2

( 1) 2 ( 1) 2
( )

( 1) 2 ( 1) 2

k k

l l

i f z i f z
H f

i f p i f p
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 

         
         

, 0f  ,  (83) 

for some complex numbers 1z , 2z , 1p , 2p , and some binary variables k and l, called the sign 

signifiers, that are equal to either 0 or 1 (so there are four different “versions” of this equa-

tion—avoiding repetition because most of what we do will be almost identical for all the sign 

combinations). The 
ka  and jb  are real, so:  

 1z  and 2z , called the zeroes of the system, are either real or a complex conjugate pair. 

 1p and 2p , called the poles of the system, are either real or a complex conjugate pair. 

 
 
 

The signs of i in each of the numerator and denominator of Eq. (83) are treated as separate 

cases because in the calculations below it is convenient to parameterize the poles and zeroes 

in polar coordinates using angles that are confined to the first quadrant (the poles and zeroes 

are confined to the second quadrant of the complex frequency plane). Here we are trying to 

find all notch-like second-order systems, so we need to consider all possibilities: we can fac-

torize with either sign, independently in both numerator and denominator. 

For any given 2
nd

 order transfer function as in Eq. (82), there are in general four transfer 

functions that differ only by the signs of i (fewer than four if either the numerator or denomi-

nator are independent of i). These four transfer functions all have the same amplitude at each 

frequency, but their phases differ. As we will show below, two of the transfer functions are 

for systems with causal step responses, and two have non-causal step responses. 

Using the real Fourier transform as defined above, i  in a transfer function is associated with 

the sinusoid sin(2 )ft , so i  represents the sinusoid sin(2 )ft  or  sin 2 ( )f t  . Thus the 

transformation i i  in the transfer function changes the sign of the phase change produced 

by the LIS at each frequency, which in some contexts can be interpreted as reversing the di-

rection of time. This transformation does not affect the magnitude of the transfer function, so 

it has no effect on whether it is notch-like. 

We arrived at Eq. (82) from the original linear differential equation by taking real Fourier 

transforms and noting that each differentiation in a differential equation is equivalent to mul-

tiplying by i  (and also by some real valued function of frequency); see Eq. (34). Although 

this suggests we have already associated i  with sin(2 )ft  because the real FT does, it does 

not affect the need to consider all possible transfer functions here. 
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Consider a quadratic q that can be either the numerator or denominator of Eq. (82):  

 
1 2( ) ( 1) 2 ( 1) 2j jq f i f x i f x            . (84) 

If 1x  and 2x  are real numbers then 

   
2 2 2 2 2 2 2

1 2( ) 4 4q f f x f x     (85) 

and 

      
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d

q f f f x f x f f f x x
df

             (86) 

which is always greater than zero. Hence there are no maxima or minima in ( )q f . 

If 1x  and 2x  are a complex conjugate pair then 1x a ib   and 2x a ib   for some real num-

bers a and b, and 

 2 2 2 2( ) 4 ( 1) 4jq f a b f i af       (87) 

so 

  
22 2 2 2 2 2 2 2( ) 4 16q f a b f a f      (88) 

and 

   
2 2 2 2 2 2 2 2 2 2 2 2 2( ) 2 4 8 32 16 4

d
q f a b f f a f f a b f

df
              . (89) 

Although 
2

( )q f  might have an extreme at 0,f   this is not of interest when looking for a 

notch. More interestingly, 
2

( )q f has an extreme at 

 
2 2

2

b a
f




  (90) 

if b a , and the second derivative at this extreme is 

 2 2

2 2

2
2 2 2 2 2 2 2 2 2

2
2

2

( ) 16 12 32 ( )b a
f

b a
f

d
q f a b f b a

df 


  





       , (91) 

which is negative—so the extreme is a minimum. 

Now we can construct a notch filter from Eq. (82). Given that its numerator and denominator 

are each either flat or have a minimum, a minimum in ( )H f  can only arise at a frequency 

where the numerator has a minimum and the denominator is varying slowly. Therefore: 

 The zeroes 1z  and 2z  are a complex conjugate pair a ib  where b a , and the 

minimum occurs near the frequency f in Eq. (90).  

 The poles 1p  and 2p  are either complex conjugates (somewhere near the zeroes, to 

avoid creating a maximum far from the minimum which would detract from the 

notch-like shape) or real numbers. Unfortunately the transfer functions for the com-
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plex and real cases are structurally different, so they have to be treated separately in 

the analysis below. 

This demonstrates that a system whose transfer function is a ratio of quadratics can be a notch 

filter, and that it is the lowest order system that can be a notch filter. 

10.1.4 Higher-Order Notch Filters 

The general form of a filter is the transfer function of Eq. (79), a ratio of polynomials in f 

with real coefficients. Any sufficiently continuous function is sufficiently closely approxi-

mated by polynomials (at least piecewise), so transfer functions of physical interest, certainly 

those corresponding to linear differential equations, can be expressed as such a filter.  

By the fundamental theorem of algebra, the polynomials in Eq. (79) are factorable into the 

product of irreducible first and second degree polynomials, the former having one real root 

and the latter two complex-conjugate roots. Any LIS or filter can only be constructed as the 

product of such first and second order notch filters, so clearly a higher order notch filter must 

be the product of second order notch filters that share the same notch frequency. Hence LISs 

that are notch filters are cascades of second order notch filters.  

10.2 Second-Order Notch Filters 
Engineers design filters in the complex-frequency plane. We are not going to explain that 

methodology here, except to motivate some remarks about parameterization by showing the 

poles and zeroes of a second-order filter (Eq. (82)) in the complex frequency plane in Fig. 10. 

(We won’t use these notations here, but beware if looking in the electrical engineering litera-

ture: electrical engineers use “i” for current, “j” for the square root of −1, and “ω” for fre-

quency measured in radians per unit time, i.e. 2 .f  )  



 31 

 

  

Figure 10: The poles and zeroes of a second order filter, in the complex frequency plane. 

The complex frequency variable s is shown in Fig. 10, on a complex plane. The imaginary 

axis is vertical, and shows (real) frequencies. The real axis is horizontal, and shows rates of 

exponential contraction (left of zero) or expansion (right side). The zeroes and poles of Eq. 

(82) are marked as black zeroes and blue crosses respectively; they are each complex conju-

gate pairs. Our transfer function H is only defined on the imaginary axis. (Engineers often 

define the transfer function for any point on the plane; they then call the function whose do-

main is confined to the frequency axis “the frequency response”.) 

The amplitude of H at some frequency 0f  is shown in red, evaluated as the ratio of products 

of distances from 0f  to the poles and zeroes. The product 1 2r r  is minimized when 0f  is near 

the zero frequency Zf  and is otherwise fairly flat, which is in accord with our calculation in 

involving Eq. (89). But 1 21 d d  is maximized when 0f  is near Pf , so Pf  should be near Zf  

and the poles should be to the left of the zeroes in Fig. 10 to ensure the minimization due to 

the zeroes is greater than the maximization due to the poles. Engineering experience and the-

ory further informs us that: 

 For a sharp notch, the zeroes should be close to the imaginary axis.  

 Putting the zeroes and poles the same distance from the origin ensures that ( )H f  is 

near unity except near the notch frequency.  

 For stability of the system, the poles must be in the left half plane, i.e. have a negative 

real part. (The transfer function, and thus the amplification of the system, is infinite at 
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a complex frequency where there is a pole. If such a pole is in the right half plane, 

where the exponential parts of the complex frequencies are positive, the pole would 

amplify an exponentially-growing sinusoid infinitely—the system output would grow 

without limit, causing instability.) Keeping the zeroes in the left hand plane might be 

wise for stability. 

10.2.1 Complex Poles 

Fig. 10 inspires the following parameterizations of the transfer function in Eq. (83), using po-

lar coordinates. The zeroes 1z  and 2z  are a complex conjugate pair, while the poles 1p  and 

2p  are also a complex conjugate pair, so let 
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   
1 2 Z Z Z Z Z

1 2 P P P P P

, 2 exp ( ) 2 cos sin
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     

     

     
 (92) 

where the zero and pole frequencies Zf  and Pf  (the reciprocals of the zero and pole periods) 

and the zero and pole angles Z  and P  are as shown in Fig. 10. Then the numerator of the 

transfer function in Eq. (83) is 
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 (93) 

Similarly for the denominator. Thus the transfer function of a second-order notch filter with 

complex poles is 
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( 1) 2 cos
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f f i f f
H f

f f i f f


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,    0f  , (94) 

where the four real parameters are constrained as 

    Z Z P P0, 45 ,90 , 0, 0,90f f        . (95) 

Note that not all parameters that meet these constraints will make NotchH  a notch filter (gen-

erally speaking, that requires Z  near 90°, P Z  , and Pf  vaguely near Zf ). For sharper cut-

offs or deeper notches (as required in electronics), use a higher order filter—which are just 

products of such second order notch filters. See Fig. 11. 
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Figure 11: The four notch filters with a given combination of two zeroes and two complex poles as parameterized 

here. The four transfer functions differ only in signs of i (the binary variables k and l), so their amplitudes are identi-

cal and only their phases differ. Note the “notch”—the sharp reduction in amplitude around 11 years—and the une-

ven “shoulders”. While not the sharpest, this type of notch filter is the simplest. 

10.2.2 Real Poles 

As in the complex case, the zeroes 1z  and 2z  are a complex conjugate pair, and we use the 

same parameterization. However the poles 1p  and 2p  are real. For system stability they must 

both be in the left half of the complex frequency plane in Fig. 10, so they are negative:  

 1 0p  ,    2 0p  . (96) 

The complex- and real-pole cases coincide when the poles are the same, both on the real axis 

at a distance D to the left of the origin in Fig. 10: 

 In the complex case, P  is zero and D is P2 f .  

 In the real case, 1p  and 2p  are both equal to .D  

To make the algebra below easier, and to parallel the frequencies Pf  and Zf  in the complex 

case, we define the radial exponential decay constants 1d  and 2d  by 

 1 12p d  ,    2 22p d  . (97) 

Thus 12 d  and 22 d  are the distances from the origin leftwards to the poles in Fig. 10. They 

are the multipliers of time in an exponential decay term, their units are inverse-time, and their 

inverses are exponential decay constants.  

The denominator of the transfer function in Eq. (83) is then 
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 (98) 

so, by Eq. (93), the transfer function of a second order notch filter with real poles is 
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where the four real parameters are constrained as 

  Z Z 1 20, 45 ,90 , 0, 0f d d      , 1 2d d . (100) 

There is little difference in the magnitude of the transfer function between real and complex 

poles; a given transfer function can apparently be constructed from either. See Fig. 12. 

 

 

Figure 12: The four notch filters with a given combination of two zeroes and two real poles as parameterized here.  

Almost indistinguishable from Fig. 11 (though they are different).  

10.3 Step Response of a Second-Order Notch Filter 

10.3.1 Complex Poles 

First split the transfer function of the notch filter in Eq. (94) into real and imaginary parts: 
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(101)

 

where 
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Then by Eq. (59) the step response of the notch filter is 
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 (103) 

This integration was performed numerically (in polar form, Eq. (63)), and gives the same re-

sult as the following calculation. By [Gradshteyn & Ryzhik, 1980, pp. 411, 3.733#4,#2,#5],  
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By [Gradshteyn & Ryzhik, 1980, pp. 411, 3.733#3,#1], 
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Thus 
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where 
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Let 

 Z Pf f      and    P P2 sint f   . (108) 

Then by Eq. (102) 
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Expanding the trigonometric functions in  : 
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( 1) 2cos ( 1) 2 cos sin cos cos sin

( 1) 2 cos
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      
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 (111) 

Collecting terms: 
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l k
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t

t



 

   
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 
 
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 (112) 

Simplifying: 

 

 

 

 

 

 

 

 

2

P P

2

P P

2 2

P

2 2

P

2
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P
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2

P
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l
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l

k

t
t

t

t

t
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
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 

    
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 


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   
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 
  
 
      
 
   
 
  
 

 

 

 

P
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P
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P
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sgn( ) ( 1) cos

1 cos sgn( )
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l
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l

k

t

t

t

 

 

  


 

  



   

  
 
  

  
  

 
     (113) 

so 
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 
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 
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P
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2
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P Z P
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2 cos cos ( 1) sgn( ) ( 1)

2 1 cos sin sgn( ) ( 1) cos

2 1 cos 2 cos cos ( 1) sgn( ) (

l

l

k l k

l

k l

t t

t

t

t

t

   

 


  

   

    





      

       
  

       

     

      
 

1) sinl   

 (114) 

and finally 

 

 

 

2

P P

Z P

2 2

P

1 cos sin cos

( ) 2 sgn( ) ( 1) ( 1) 2 cos cos
sin

1 cos

l k lt t

   

  


 



 
 
 

        
   

     

. (115) 

Thus the step response of the 2
nd

 order notch filter with complex poles, whose transfer func-

tion is in Eq. (94), is (finally!) 

          2

Notch, C S S

1
( ) step( ) sgn( ) ( 1) exp cos sin

2

lr t t t t A t B t               (116) 

where the constants (independent of t) are  

 

 2

Z P2

P

C P P Z P

S P P

( 1) 2 cos 1 cos
1

sin

2 cos

2 sin .

k l

A B

f f f

f

   




   

  

  
  

 



 (117) 

Note that C 0  , S 0  , and 0  . 

The character of the step response depends decisively on l. For complex poles, if l is zero 

then the step response is  

 

     C S S

2

Notch, ,0

2

exp cos sin if 0

1
( ) if 0

2

if 0,

t A t B t t

r t t

t

  





    



  

 


 (118) 

which is non-causal (that is, non-zero before the step stimulus starts at time zero). However if 

l is one then the step response is causal:  

 

     

Notch, ,1

2

C S S

0 if 0

1
( ) if 0

2

exp cos sin if 0.

t

r t t

t A t B t t   

 



 

      

 (119) 
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The effect of k is confined to B , which does not affect the character of the step response. l 

also affects B . 

This result has been checked against numerical integrations of Eq. (101) in Eq. (63). An ex-

ample is shown in Fig. 13. 

 

 

Figure 13: Step response of the four notch filters in Fig. 11, with complex poles. The four notch filters, sharing the 

same combination of two zeroes and two complex poles as parameterized here, have transfer functions that differ 

only in signs of i (the binary variables k and l). When l is 1 the step response is casual, but when l is 0 the step re-

sponse is non-causal (i.e. the step response starts before the stimulus, that is, before the step function rises). 

10.3.2 Real Poles 

First split the transfer function of the notch filter in Eq. (99) into real and imaginary parts: 

 

   

   

    

     

 
 

2 2 2

Z Z Z 1 2 1 2

Notch, 2 22 2

1 2 1 2

2 2 2 2

Z 1 2 1 2 Z Z

2 2 2

1 2 Z Z Z 1 2

2 2 4 2 2 2

1 2 1 2

4 2

( 1) 2 cos ( 1)
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1 2
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f f
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f d f d
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where 
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 
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d d f f d d

 



 

 

            



          

          

 (121) 

Then by Eq. (59) the step response of the notch filter is 

    

   

  
 
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 
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

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





 (122) 

This integration was performed numerically (in polar form, Eq. (63)), and gives the same re-

sult as the following calculation. By [Gradshteyn & Ryzhik, 1980, pp. 409, 3.728#4,#2], 

when 1f  and 2f  are unequal, 
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


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


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 (123) 

Unfortunately the definite integral involving   is not listed in [Gradshteyn & Ryzhik, 1980], 

except when 1d  and 2d  are equal, in which case by [Gradshteyn & Ryzhik, 1980, pp. 412, 

3.735#1]): 
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
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

  



 

 
    

 


 (124) 

Guessing the definite integral in the second part of the left hand side using the pattern of 

[Gradshteyn & Ryzhik, 1980, pp. 409, 3.728#1,#2,#3,#4] when 1d  and 2d  are unequal (we 

later used two other methods, numerical integration and estimation of the step response using 

the FFT, to verify the resulting step function, so we are confident that this guess is correct),   
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
 (125) 

By [Gradshteyn & Ryzhik, 1980, pp. 409, 3.728#3,#1], when 1d  and 2d  are unequal, 
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 (126) 

Thus 
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where, by Eq. (102), 
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 (128) 

Let 

 Z Z2 cosf  . (129) 

Then by Eq. (121), 
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 (130) 

and 
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Hence the step response of the 2
nd

 order notch filter with real poles, whose transfer function 

is in Eq. (99), is 

        
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where the constants (independent of t) are 
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The character of the step response depends decisively on l. For real poles, if l is zero then the 

step response is 

    Notch, ,0 1 2

2

Z

1 2

( ) exp 2 exp 2 if 0

1
if 0

2

if 0,

r t A d t B d t t

t

f
t

d d

    

 


 


 (134) 

which is non-causal. However if l is one then the step response is causal:  

 

   

Notch, ,1

2

Z

1 2

2

Z
1 2

1 2

( ) 0 if 0

1
if 0

2

exp 2 exp 2 if 0.

r t t

f
t

d d

f
A d t B d t t

d d
 

 

  


     


 (135) 

The effect of k is confined to A  and B , which does not affect the character of the step re-

sponse. l also affects A  and B . 

This result has been checked against numerical integrations of Eq. (120) in Eq. (63). An ex-

ample is shown in Fig. 14. 
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Figure 14: Step responses of the four notch filters in Fig. 12, with real poles. Similar to Fig. 13. 

Fig.s 13 and 14 show that, at least for the parameter values depicted, the step response of a 

notch filter would be roughly causal (that is, “good enough”) if it was simply delayed. At 

least to a good approximation, a delay of about 11 years would be sufficient. 

10.4 Example 1: Series RLC Circuit 
Here we examine a simple electronic circuit that implements a simple second-order notch fil-

ter. We find its transfer function from first principles, find its step response by applying the 

result based on Fourier-analysis above, then confirm from first principles that the step re-

sponse so found is indeed its step response. 

10.4.1 The System 

 

Figure 15: A series RLC circuit is a notch filter. It consists of a resistor R, inductor L, and capacitor C in series. The 

input voltage is Vin, and the output or notch voltage is VN. The LC section is a resonant circuit, and near the resonant 

frequency its impedance is low. The notch voltage is just the voltage divider between the R and LC sections.   
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The input of the system is the applied voltage inV , and the output is the notch voltage NV . Let 

I denote the current in the circuit. Elementary circuit analysis yields two equations to describe 

the circuit: 

 in

1dI
L RI Idt V

dt C
    (136) 

 N inV V IR  . (137) 

R, L, and C are positive and constant (independent of time), while inV , I, and NV  are functions 

of time. All the components of the circuit are linear and invariant, so the system is a LIS. 

For numerical expression in this example, let 

  3, 1, 1R L C   . (138) 

10.4.2 Differential Equation 

The input voltage inV  is taken as given; we are trying to solve for the notch voltage NV . Elim-

inate the intermediate variable I by substituting  1

in NR V V   into Eq. (136), giving the sin-

gle circuit equation 

 N in
N N in

1 1dV dVL L
V V dt V dt

R dt RC R dt RC
     . (139) 

Differentiating with respect to time and multiplying by R L ,  

 2 2

N in

1 1R
D D V D V

L LC LC

   
      

   
 (140) 

where D is the differentiation operator d dt . This last circuit equation is the linear differen-

tial equation that fully describes the system. It is linear and invariant, so it describes a LIS. It 

is a second-order linear non-homogeneous ordinary differential equation, whose methods for 

solution are well known, e.g. [Tseng, 2008]. The corresponding homogeneous equation is 

 2

N

1
0

R
D D V

L LC

 
   

 
, (141) 

whose characteristic equation is 

 
2 1

0
R

D D
L LC

   . (142) 

The difference between any two solutions to Eq. (140) is a solution to Eq. (141); therefore 

every solution to Eq. (140) is any “particular solution” to Eq. (140) plus one of the solutions 

to Eq. (141) (which are collectively called the “complementary solution”). In an electrical 

circuit, the complementary solution describes the transients (which hopefully die away to ze-

ro before long), and the particular solution is the steady-state solution [Edminister, 1965, p. 

242]. 

The solution to the characteristic equation is 
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 D     (143) 

where 

 
2

R

L
   ,   

2

21 1

2

R

L LC LC
 

 
    

 
. (144) 

The solution has three cases, depending on whether   is the square root of a positive, zero, 

or negative real number—the overdamped, critically damped, and underdamped cases respec-

tively. In what follows we need only consider one of the main cases, so we are only going to 

consider the overdamped case; thus   is a real number and 

    0  ,    0  ,      ,    0   . (145) 

Continuing our numerical expression, 

 
3 5 3 5

1.5, 1.12, 0.38, 2.62
2 2 2

   
 

         . (146) 

The differential equation is expressed in terms of   and   as 

              2 2 2 2

N N in

1
2D D V D D V D V

LC
      

                      
, (147) 

while the homogeneous equation is 

      2 2 2

N N2 0D D V D D V                       
. (148) 

Because the roots of the characteristic equation (Eq. (142)) are real and are   , the com-

plementary solution (the solution to the homogeneous equation) is 

 
   

N,C 1 2( )
t t

V t c e c e
    

   (149) 

for some constants 1 2,c c   that are determined by the boundary conditions after the general 

solution (the sum of a particular solution and the complementary solution) is found. Note that 

both terms in the complementary solution each satisfy the homogeneous equation: 

    
0

t

jD c e
 

 


     . (150) 

Because    are negative, the complementary solution consists of two transients that die 

away with time, but which are infinite for infinitely negative times. 

10.4.3 Transfer function 

When we excite the system with an input voltage inV  that is a sinusoid at frequency ef , the 

output NV  will also be a sinusoid at ef  because the system is a LIS. The value of the system’s 

transfer function at ef  is the output sinusoid represented as a complex number (as per Eq. 

(18)) divided by the input sinusoid represented as a complex number. 



 46 

 

Let the input voltage inV  be ecos( )t , where e e2 f   and e 0f  . It is represented by the 

complex number unity, so the transfer function is just the complex number that represents the 

output sinusoid. The differential equation describing the system (Eq. (147)) becomes 

  2 2 2 2

N e e e

1
2 cos( ) cos( )D D V t t

LC
           

 
. (151) 

NV  is a sinusoid at frequency ef , so let us try a particular solution of the form 

 N e e( ) cos( ) sin( )V t A t B t    (152) 

for some real numbers A and B. Then the LHS of Eq. (151) becomes 

 

   

 

 

  

 

 

2 2 2

e e

2

e e e

e e e

2 2

e e

2 2 2

e e e

2 2 2

e e e

2 cos( ) sin( )

cos( ) sin( )

2 sin( ) cos( )

cos( ) sin( )

2 cos( )

2 sin( )

D D A t B t

A t B t

A t B t

A t B t

A B A t

B A B t

    

  

  

   

    

    

    
 

  

  

  

     
 

     
 

 (153) 

so 

 
 

 

2 2 2 2

e e e

2 2 2

e e

1
2

2 0.

A B A
LC

B A B

    

   

      

    

 (154) 

Hence 

 e

2 2 2

e

2
B A



  




 
 (155) 

and 

 

  

 

1 1 2

e e

2 2 2
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1 1 2e
e e2 2 2

e

2 2 2

e

2 2 1 1 2 2 2 2

e e e

2
2 2 2

e

2

2
2

4

B L C
A

A L C

A L C
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
 

  

  

     

  

 

 

 

 


 


 

 


 

    


 

 (156) 

so 

  2 2 2

eA        (157) 

and 
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 e2B     (158) 

where 

 

 

1 1 2

e

2
2 2 2 2 2

e e4

L C 


    

  


  
. (159) 

Therefore a particular solution is 

  2 2 2

N e e e e( ) cos( ) 2 sin( )V t t t           . (160) 

[Check by substituting it into Eq. (151): 

 

 

 

 

    

     

2 2 2

N

2 2 2 2 3

e e e e e

2 2 2 2 2

e e e e e

2 2 2 2 2 2 2

e e e e

2 2 2 2 2 2 2 2 2 2 2

e e e e e

2
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2 sin( ) 4 cos( )

cos( ) 2 sin( )

4 cos( )

2

LHS D D V

t t

t t

t t

t
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      

        

         

            



    
 
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 
 

     
 
       

        

      
   

 

 

3 2 2 2 2 2

e e e e e

2 2 2 2 2 2 2 2

e e e e

e

1 1 2

e e

2 2 sin( )

4 cos( )

0 sin( )

cos( )

. ]

t

t

t

L C t

RHS

        

         

 

  

    

     



 



 

Adding the complementary solution in Eq. (149), the general solution is  

      2 2 2

N e e e e 1 2( ) cos( ) 2 sin( )
t t

V t t t c e c e
   

       
 

       (161) 

for some 1 2,c c  . The boundary condition that NV  remains finite as time goes to positive or 

negative infinity implies that 1c  and 2c  are zero—which is to be expected because these rep-

resent transients but a true transfer function is the response to an input sinusoid that exists for 

all time and thus involves no transients. The output is therefore  

  2 2 2

N e e e e( ) cos( ) 2 sin( )V t t t           , (162) 

the sinusoid at frequency ef  represented by the complex number  2 2 2

e e2i        . 

By Eq. (144), 2 2   is equal to 
1 1L C 

. Hence the transfer function of the system is 

 
 

 
 

2 2 2 2

2 2 2 2

N 2
2 2 2 2 2 2 2

4 4
( ) 4

16 4

f i f
H f f

f f

   
  

    

  
  

  
,    0f  . (163) 

Observe that this is consistent with a notch filter: 

 As 0f  , N ( ) 1H f  . 
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 As f  , N ( ) 1H f  , the same non-zero value as when 0f  . 

 N ( )H f  is positive for all f, except that it is zero when f is 1 2 LC . Thus it is a 

minimum at 1 2 LC , which is the notch frequency. 

We can establish if this is a notch filter by seeing if it is of the form of the transfer function of 

a second-order notch filter, above. The solutions of the characteristic equation (Eq. (142)) are 

real, so if it was a notch filter it would have real poles rather than complex poles and its trans-

fer function would be like Notch,H . We need to compare Notch,H  in Eq. (120) with NH  in Eq. 

(163) in order to find  ,  ,  , and  , and then from those find the Zf , Z , 1d , and 2d  pa-

rameters used in Eq. (99). Let’s start by matching the denominators. The denominator of NH  

in Eq. (163) is 

 

 

   

   

   

2
2 2 2 2 2 2 2

2
2 2 2 2 2 4 4 2 2 2 2

2
4 4 2 2 2 2 2 2

2
2 2 2 2 2

4 4

2 4

16 4

16 16 8

16 8

16 ,
2 16

f f

f f f

f f

f
f

    

       

     

   


 

  

     

    

   
   

  

 

and setting this to the denominator of Notch,H  in Eq. (120) gives 

 
   

  
2

2 2 2 2 2

4 2 2 2 2

1 22 42 16

f
f f d f d

   

 

 
     . (164) 

Therefore  
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2 2
2 2

1 2 2

2
2 2

2 2

1 2 4

2

,
16

d d

d d

 



 




 




 (165) 

so 

 

2 2

2 2

1 2,
2 2

d d
   

 

    
    
   

. (166) 

Because 1d  and 2d  are positive (Eq. (100)) while    are negative (Eq. (145)), only the 

negative square roots are valid: 

 1 2,
2 2

d d
   

 

 
    . (167) 

Thus 

 
2 2

1 2 1 2 1 2 2
, ,

4
d d d d d d

   

  


       . (168) 
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Now match the numerators. With the denominators as in Eq. (164), the numerator of NH  is 

 

 
 

   

2 2 2 2

2 2 2 2

4

2
2 2 2 2 2 2 2 2

4 3

4 4
4

16

4 4
,

16 4

f i f
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f f f
i

   
  



      

 

  
 

   
 

 (169) 

while the numerator of 
Notch,H  is    4 2 3f f i f f       . Thus, substituting for   

and   using Eq. (168), 

 

 
 

 
 

2 2

1 22

2
2 2

2

1 24

1 2

2 2

1 2
1 2 1 23

2
2
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.
4

d d

d d

d d

d d
d d d d

 




 








   


 


   


 

   


     

 (170) 

We now compare these to Eq. (121). From the equation for  , 2

Zf  is equal to 1 2d d . Substi-

tuting for 2

Zf  in the equation for  , Zcos  is zero so Z  is 90°. Substituting for Zcos  in the 

equation for  , l is one. Substituting for 2

Zf , Zcos , and l satisfies the equation for  . Thus 

the mapping between NH  and Notch,H  is: 

 
2 2

2

1 2 Z 1 2 Z2
, , , 90 , 1

2 2 4
d d f d d l

     


  

  
         . (171) 

The zeroes and poles are (see Eq.s (92), (171), (144), (97))  

    

  2 2

1 2 Z Z Z Z 1 2

2

1 2 1 2

1
, 2 cos sin 2 2

1
, 2 , 2 .

2 2

z z f i i f i d d i i
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R R
p p d d

L L LC
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   

           

 
         

 

 (172) 

Continuing our numerical expression, 

      1 2 Z Z

3 5 1
, 0.061,0.417 Hz,   0.159 Hz, 90

2 4 2
d d f

 


  

  
         (173) 

and 

 

1 2

2

1 2

,  rad/s  Hz 0.159 Hz
2

3 3
, 1 0.38, 2.62 rad/s 0.061, 0.417 Hz,

2 2

i
z z i i

p p


    

 
        

 

 (174) 

which agree with industry website [Okawa Electric Design, 2015].  
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That the transfer function of the system in Eq. (163) can be mapped onto the transfer function 

of a notch filter in Eq. (120) confirms that the system is indeed a notch filter. We can use that 

mapping to give the transfer function in the form of Eq. (99):  

 

 

2 2

Z
N 2

1 2 1 2

2 2 2 2

2 2 2 2

2 2

2 2

( )

4

4 4

1 4
.

1 4 2

f f
H f

d d f i f d d

f

f i f

LCf

LCf i RCf

  

   



 




  

 


  




 

 (175) 

 

 

Figure 16: Transfer function of the series RLC circuit. Note the notch in the amplitude. 

10.4.4 Step Response from the Transfer Function 

Now that we have the transfer function of the system in the form used to compute the step 

response by Fourier analysis above, we can apply that result. Substituting the mapping of Eq. 

(171) into the step response in Eq.s (132) and (133), the system’s step response is  

 
   

( ) step( ) step( )
t t

r t t t e e
   



    
 

, (176) 

which is causal, with the transients in the second term only existing when t is positive and 

dying away as t increases. (k was not determined above, but it does not affect the step re-

sponse because Zcos  is zero. Thus the Fourier analysis gave only this one step response.) 
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Figure 17: Step response of the series RLC circuit. It is causal. The response is the same as the step input, except for 

some transients that soon die out. 

10.4.5 System Stability 

The transfer function in Eq. (175) can be converted to the Laplace-transform transfer function 

by substituting s for 2i f : 

 

2
2

N,s 2
2

1

1
( )

11

s
s LC LCH s

Rs LC sRC
s s

L LC




 
 

 

. (177) 

The complex frequency s is 2i f  , where   is the rate constant in an exponential factor 
ste  that multiplies the sinusoids in a Fourier analysis as performed by a Laplace transform. In 

(regular) Fourier analysis as above,   is zero. Here s is 2i f  rather than 2i f  because l 

is one—see Eq. (83). Electrical engineers will recognize N,sH  as the expression for N inV V  in 

the Laplace-transformed version of Fig. 15. The poles of N,sH  are the solutions of the charac-

teristic equation, namely   , which are both negative and thus in the left half of the s-

plane—so the system is stable. Alternatively note that the transients of the step response in 

Eq. (176) get smaller as time progresses—so the system is stable. 

10.4.6 Step Response by Solving the Differential Equation  

Here we confirm from first principles that the function r in Eq. (176) is the step response R of 

the system, by testing r in the differential equation for the system. The step response R is the 

output voltage NV  when the input voltage inV  is the step function, so it must satisfy Eq. (147): 
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  2 2 2 2 1 12 stepD D R D L C             
. (178) 

The step function has derivatives that involve delta functions; let us denote them by 

 
2

step step

step step .

D

D




 (179) 

We now substitute r in Eq. (176) into Eq. (178). First, note that 

    2 2 2 2 22 step( ) step ( ) 2 step ( ) step( )D D t t t t              
 

 (180) 

and, because step  and step  are zero except when their argument is zero, 

 

   

         

     

   

 
     

 

2 2 2

2

2 2

2 2 2

2 step( )

step ( ) step ( ) step( )

2 step ( ) step( )

step( )

2 step( )

2 step ( ) step ( )

t

t t t

t t

t

t

D D t e

t e t e t e

t e t e

t e

t
e

t t

 

     

   

 

 

  

   

  

 

      

  



  

 





   
 

      
 
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      

 

 

 

2 2 2 2 22 2 2 step( )

step ( ) step ( )

step ( ) step ( ).

t
t

e
t t

t t

 
      

 

 




 


  

        
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 (181) 

Then, with the aid of Eq. (144), 
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so the function r in Eq. (176) is indeed the step response of the system. 

10.5 Example 2: Reversed Series RLC Circuit 
Consider an imaginary system that is the same as the notch filter circuit in Section 10.4, ex-

cept that time runs backwards! We do this merely to generate a system that is the non-causal 

counterpart of the previous example, not because time really runs backwards or we have any 

interest in knowing what might happen if could be said to run backwards.  



 53 

 

10.5.1 The System 

The circuit equation is as per Eq. (139) except that dt  becomes dt , so the equation describ-

ing this system is    

 N
N N

1 1dVL dV L
Vdt V V dt

R dt RC R dt RC
       . (182) 

10.5.2 Differential Equation 

Differentiating with respect to time and multiplying by R L ,  

 2 2

N in

1 1R
D D V D V

L LC LC

   
      

   
. (183) 

This circuit equation is the linear differential equation that fully describes the system, differ-

ing from Eq. (140) only in the sign of the lone D term. Its homogeneous equation is  

 2

N

1
0

R
D D V

L LC

 
   

 
, (184) 

whose solution is  

 D      (185) 

where   and   are as above in Eq.s (144) – (146). The differential equation expressed in 

terms of   and   is thus 

           2 2 2 2

N N in

1
2D D V D D V D V

LC
      

                        
, (186) 

again differing from Eq. (147) only in the sign of the D term. 

10.5.3 Transfer function 

To find the system’s transfer function we excite it with input ecos( )t  as above, whereupon 

the output NV  must satisfy 

  2 2 2 2

N e e e

1
2 cos( ) cos( )D D V t t

LC
           

 
. (187) 

Proceeding as in section 10.4.3, the solution to this is 

  2 2 2

N e e e e( ) cos( ) 2 sin( )V t t t           , (188) 

which is the same as Eq. (162) except that the sign of the sine is flipped. Hence the transfer 

function of the system is 
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   
  

    

  
  

  
,    0f  , (189) 
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which is identical to NH  in Eq. (163) except that the sign of i is flipped. To map this to 

Notch,H  in Eq. (120), we proceed as before up to Eq. (169), which is the same except the sign 

of i is flipped. Then, flipping the sign of   and  , Eq. (170) becomes 
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 
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 (190) 

Now when we compare these to Eq. (121), the equation for   implies 2

Zf  is equal to 1 2d d  

and the equation for   implies Z  is 90°, as above. Substituting for Zcos  in the equation for 

 , l is now zero instead. Substituting for 2

Zf , Zcos , and l satisfies the equation for  . Thus 

the mapping between N*H  and Notch,H  is: 

 
2 2

2

1 2 Z 1 2 Z2
, , , 90 , 0

2 2 4
d d f d d l
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

  

  
         , (191) 

which is as per Eq. (171) but l is zero instead of one. The zeroes and poles we are using to 

characterize this transfer function are as in the previous example, Eq.s (172) – (174). Howev-

er, by this mapping, the system’s transfer function in the form of Eq. (99) is identical to NH  

in Eq. (175) except that the sign of i is flipped: 
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 (192) 
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Figure 18: Transfer function of this system. Same as Fig. 16, except the sign of the phases is reversed. 

10.5.4 Step Response from the Transfer Function 

Substituting the mapping of Eq. (191) into the step response in Eq.s (132) and (133), the sys-

tem’s step response is  

 
   

Notch, ( ) step( ) step( )
t t

r t t t e e
   



       
 

, (193) 

which is non-causal, with the transients in the second term only existing when t is negative 

and dying away as t decreases. (k was not determined above, but it does not affect the step 

response because Zcos  is zero. Thus the Fourier analysis gave only this one step response.)  
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Figure 19: Step response of this system. It is non-causal. The transients “die out in negative time”. Compare with Fig. 

17, which is for a system with the same transfer function except the signs of the phases. 

10.5.5 System Stability 

Substituting the complex frequency s for 2i f  (because l is zero—see Eq. (83)), the La-

place-transform transfer function is 

 

2
2

N*,s 2
2

1

1
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11

s
s LC LCH s

Rs LC sRC
s s

L LC




 
 

 

 (194) 

the same as Eq. (177) (Laplace transforms are one-sided, ignoring everything before time ze-

ro, so different systems can have the same Laplace transform transfer function). Its poles, 

   (Eq.s (142) and (143)), are in the left hand side of the s-plane—so the system is stable. 

(Note that 12 d  and 22 d  are defined as the distances of the poles into the left hand of the s-

plane in Eq. (97), and that they are positive.) If one substituted s for 2i f  instead (as one 

would if l was one), then N*,sH  would be the same except the sign of the s term in the denom-

inator would be flipped, which would lead to positive poles—in which case the system would 

be unstable. The roots of the characteristic equation (Eq. (185)) are    , which are posi-

tive, so the complementary solution is 
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N*,C 1 2( )
t t

V t c e c e
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  , (195) 

so any transients grow larger with time—which would suggest that the system is unstable, 

except that the transients in the step response (Eq. (193)) only exist for times before zero 

(where they are always finite)! So this system appears to be stable but non-causal. 

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-10 -5 0 5 10

N
o
tc

h
 V

o
lt
a
g
e
 /

 I
n
p
u
t 

V
o
lt
a
g
e
 [

s
te

p
 r

e
s
p
o
n
s
e
]

o
r 

In
u
t 

V
o
lt
a
g
e
 i
n
 V

o
lt
s
 [

In
p
u
t 

S
te

p
]

Time (seconds)

Step Response of a System like the RLC Circuit but with a Changed Sign

sciencespeak.com

Step
(Input Voltage)

Step Response
(Notch voltage / Input Voltage)

R = 3, L = 1, C = 1
z1,z2 = +0.159i, -0.159i Hz
p1,p2 = -0.061, -0.417 Hz
l = 0



 57 

 

11 The Notch-Delay Solar Model 

The notch-delay solar model is a specific arrangement of a notch filter, delay filter, and a low 

pass filter, and is itself a filter. It is organized into two parallel paths—a “direct” path consist-

ing of just the low pass filter, and an “indirect” path consisting of the notch and delay filters 

and then the low pass filter. The model input is fed into each path; the model output is the 

sum of the outputs of the paths.   

11.1 Step Response of the Indirect Path 
The indirect path of the notch-delay filter consists of the notch filter, the delay filter, and the 

low pass filter, in a cascade. The transfer function of a cascade of LISs is the complex prod-

uct of the transfer functions of the individual LISs, and because complex multiplication is 

commutative and associative, the individual LISs can be considered to be in any order. In or-

der to use Notchr  and avoid calculating the impulse response of the notch filter or the inverse 

transform of the product of the individual transfer functions, we will analyze the indirect path 

as organized in Fig. 20.  

Inputting a step function into the indirect path, the output of the notch filter is simply the step 

response of the notch filter Notchr . The output of a LIS is the convolution of its input and its 

impulse response (Eq. (11)), so the output of the LPF is Notch LPFr h  and the output of the en-

tire indirect path is Notch LPF Delayr h h  . 

 

 

Figure 20: Finding the step response of the indirect path in the notch-delay filter. 

11.1.1 Notch and Low Pass Filter 

The step response of the combination of the notch and low pass filters is, by Eq. (71),  
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(196)

 

11.1.2 Notch with Complex Poles and Low Pass Filter 

With complex poles, Notchr  becomes the Notch,r  of Eq. (116).  The character of Notch,r  is quite 

different depending on whether l is zero or one, so we treat them separately. The results here 

have been checked against numerical integrations of the product of Eq.s (94), (66), and (73) 

in Eq. (59).   
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If the notch filter has complex poles and l is zero, then 
Notch,r  is given by Eq. (118). If 0t   

then ( )t  is 
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where 

 C B2 f    , (198)  

so by [Gradshteyn & Ryzhik, 1980, pp. 195, 2.662#2,#1]  
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and 
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For 0t  , ( )t  is 
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Hence the step response of the notch-LPF cascade, when the notch has complex poles and l is 

zero, is 
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 (202) 

 

If the notch filter has complex poles and l is one instead, then 
Notch,r  is given by Eq. (119). If 

0t   then ( )t  is, by Eq. (196), 
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For 0t  , ( )t  is 

    

   

   
 

 
 

 

 

   

   

,1 B B Notch, ,1 B

S2

B B C B
0

S

2

B
0

B B S
0

S
0

( ) 2 exp 2 ( )exp 2

cos
2 exp 2 exp exp 2

sin

exp 2

2 exp 2 exp cos

exp sin

t

t

t

t

t

t f w f t r u f u du

A u
f w f t u f u du

B u

f u du

f w f t A u u du

B u u du

  


    



 

   

 


  

   
      

    

 



  





















 (204) 

where 

 C B2 f     , (205)  

so by [Gradshteyn & Ryzhik, 1980, pp. 195, 2.662#2,#1]  
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 (206) 

Hence the step response of the notch-LPF cascade, when the notch has complex poles and l is 

one, is 
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 (207) 

Our example is continued in Fig. 21. 
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Figure 21: The step response of a notch filter in cascade with a low pass filter. These are the same filters as in Fig. 13 

(showing the four notch transfer functions that differ only by signs of i) and Fig. 6. Notice how the low pass filter 

smooths the notch step response, especially the prominent sharp corners at the time origin. 

11.1.3 Notch with Real Poles and Low Pass Filter 

With real poles, Notchr  becomes the Notch,r  of Eq. (132).  The character of Notch,r  is quite dif-

ferent depending on whether l is zero or one, so we treat them separately. The results here 

have been checked against numerical integrations of the product of Eq.s (99), (66), and (73) 

in Eq. (59). 

If the notch filter has real poles and l is zero, then Notch,r  is given by Eq. (134) . If 0t   then 

( )t  is, by Eq. (196), 
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where  

  1 B 12 f d       and     2 B 22 f d   , (209)  

so 
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and 
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For 0t  , ( )t  is 
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 (212) 

Hence the step response of the notch-LPF cascade, when the notch has real poles and l is ze-

ro, is 
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If the notch filter has real poles and l is one instead, then Notch,r  is given by Eq. (135). If 

0t   then ( )t  is, by Eq. (196), 

    ,1 B B Notch, ,1 B( ) 2 exp 2 ( )exp 2 0
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For 0t  , ( )t  is 
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where  

  1 B 12 f d       and     2 B 22 f d   , (216)  

so 
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 (217) 

Hence the step response of the notch-LPF cascade, when the notch has real poles and l is one, 

is 
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 (218) 

11.1.4 Notch, Low Pass Filter, and Delay 

Now let us add in the effect of the delay filter (see Fig. 20). The step response of the notch, 

low pass, and delay filters combined is, by Eq. (71),  
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which of course is the step response of the notch-LPF cascade delayed by d.  

11.1.5 Notch with Complex Poles, Low Pass Filter, and Delay 

The step response of the indirect path (i.e. notch, delay, and LPF), when the notch has com-

plex poles and l is zero, is, by Eq.s (202) and (219), 
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where the parameters are defined by Eq.s (64), (72), (94), (117), and (198). To make it (al-

most) causal, d has to be positive—that is, the effect of the notch has to be delayed (not ad-

vanced). If l is one instead, the step response, by Eq. (207), is 
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where the parameters are defined by Eq.s (64), (72), (94), (117), and (205). Our example con-

tinues in Fig. 22. 
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Figure 22: The step response of the indirect path in the Notch-Delay Solar Model, a notch filter in cascade with a low 

pass filter and a delay filter. As per Fig. 21, except now with a delay. The delay makes the step response causal. 

11.1.6 Notch with Real Poles, Low Pass Filter, and Delay 

The step response of the indirect path (i.e. notch, delay, and LPF), when the notch has real 

poles and l is zero, is, by Eq.s (213) and (219), 
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where the parameters are defined by Eq.s (64), (72), (99), and (133). To make it (almost) 

causal, d has to be positive. If l is one instead, the step response is instead, by Eq. (218), 
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where the parameters are defined by Eq.s (64), (72), (99), and (133).  
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11.2 Step Response of the direct Path 
The direct path just has the low pass filter, so its step response is given by Eq. (70) and is 

shown in Fig. 6. 

11.3 Step Response of the Notch-Delay Solar Model 
The notch-delay solar model is the sum of the direct and indirect paths, so when the notch 

filter has complex poles its step response is 

  ND, B IPath, ,( ) 1 exp 2 step( ) ( )lr t k f t t r t      ,    0,1l   (224) 

(see Eq.s (220) and (221) for 
IPath, ,0r  and 

IPath, ,1r ). See Fig. 23. When the notch filter has real 

poles, the step response of the notch-delay solar model is 

  ND, B IPath, ,( ) 1 exp 2 step( ) ( )lr t k f t t r t      ,    0,1l   (225) 

(see Eq.s (222) and (223) for IPath, ,0r  and IPath, ,1r ). 
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Figure 23: The step response of the notch-delay solar model is the sum of the step responses of its direct and indirect 

paths. Adds Fig.s 22 and 6 (after scaling by mDLM and mILM).  
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11.4 Insight into the Notch-Delay Solar Model Filter 
According to the notch-delay solar theory, the Sun is the main driver of changes in surface 

temperatures here on Earth. However the effect is not primarily due to the direct heating ef-

fect of changes in bulk sunlight, because they are much too small to have caused the global 

warming of the last few decades. Instead, it is changes in some aspect of the Sun (for exam-

ple, perhaps the amount of extreme UV) that affect the Earth’s albedo (for example, perhaps 

by ozone affecting the shape of jet streams and thus cloud formation, or by plankton manu-

facturing reflective aerosols). The hypothesis is that a solar force, at this stage unknown and 

called “force X”, drives surface temperatures on Earth by modulating the Earth’s albedo. A 

critical feature of force X is that changes in force X lag one sunspot cycle, or 11 years on av-

erage, behind corresponding changes in total solar irradiance (TSI).  

(“Force X”? Surely you must be joking, that’s like something out of a cartoon. It is, but the 

cartoons got their inspiration from “x-rays”—whose discoverer, Wilhelm Röntgen, named 

them thus to signify an unknown type of radiation.) 

We model this with a system whose input is TSI and whose output is surface temperature, 

both functions of time. To a first approximation, surface temperatures follow force X, which 

is proportional to the TSI delayed by roughly 11 years. That step response is shown in Fig. 

24.  

 

 

Figure 24: To a first approximation, the step response of the system whose input is TSI and whose output is surface 

temperature is a delay of about 10.7 years. 
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But force X is attenuated during the sunspot maxima, possibly dropping briefly to a minimum 

as the solar magnetic field reverses polarity. But during the sunspot maxima the TSI peaks 

slightly, which causes surface temperatures to rise by direct heating—the two effects largely 

cancel out, resulting in the observed notch at around 11 years in the transfer function from 

TSI to surface temperature. So, to a second approximation, force X is like the delayed TSI 

but with a notch filter applied to reduce force X during the TSI peaks that occur during the 

sunspot maxima. 

Although a notch was observed in the empirical transfer function we don’t know the phases 

of that transfer function, so the step response of the notch filter could be any of the eight 

basic types that fit the observed transfer function amplitude (see Fig. 11, 12, 13, 14, which 

show real and complex poles, with four combinations of signifiers k and l). But four of them 

are very similar to the causal step response, and four of them are like the non-causal step re-

sponse, so we need only consider those two step responses. However the actual step response 

might be a mix of the two. See Fig. 25. 

 

 

Figure 25: To a second approximation, the system is a delay and a notch. We are not yet sure which of the two step 

responses shown is appropriate. 

But the Earth has a considerable thermal momentum: heat the planet by moving to a slightly 

higher level of extra sunlight or decreased albedo, and it takes a couple of years for the tem-

perature to rise and level off to its new level. So, to a third approximation, we introduce a low 

pass filter to smooth out the temperature response of the Earth, as shown in Fig. 26. 
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Figure 26: To a third approximation, the system is a delay, a notch, and a low pass filter. 

Finally, the surface temperature is also changed by the direct heating effect of TSI changes. 

So we must introduce the direct path, in parallel with the notch and delay of the indirect path 

but sharing the same low pass filter. See Fig. 27. 
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Figure 27: Full model, with a direct path in parallel with the indirect path. The effect of the direct path, for changes 

in direct heating of Earth by TSI, is of relatively minor. 

11.5 Simple Approximation to the Notch-Delay Solar Model Filter 
The step response of the ND solar model illustrated is approximated by a centered 11-year 

smoother, whose output at time t is simply the plain, unweighted average of the input over the 

interval  5.5years, 5.5years ,t t   with the same delay, and scaled to match the final output 

of the ND solar model filter. The step responses of both the 11-year centered smoother and 

the notch filter (and even more so the notch-LPF cascade) crudely approximate the step re-

sponse of the identity system. See Fig. 28. 
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Figure 28: An 11-year smoother-with-delay is a crude approximation of the notch-delay solar model. 

12 Conclusion 

The context of this document is developing a theory of how the Sun affects the Earth’s tem-

perature, given that carbon dioxide has only a minor effect.  

The sunspot record from 1610 is about all we have measured about the Sun, on a timescale of 

more than a few decades. Those sunspot numbers have been converted to estimates of total 

solar irradiance (TSI), by comparing TSI and sunspots over the last few decades and building 

a model that translates between the two. So a system whose input is TSI and whose output is 

the Earth’s surface temperature was studied, as the obvious and perhaps only possibility. The 

system is presumably linear for the small perturbations involved, and is presumably invariant 

(that is, does not change significantly with time), so the methods of Fourier analysis would 

seem to apply. 

It was found empirically that the magnitude of the transfer function of this system had a 

prominent notch, no matter which datasets or periods were examined. The notch had a center 

frequency that corresponds to a period of ~11 years, the average length of the sunspot cycle 

but only half the length of a full solar cycle. The phases of the transfer function are unknown.  

Thus we are interested in all possible systems that could explain a notch in the magnitude of a 

transfer function. We found that a 2
nd

 order filter is the least complicated filter that could 

produce a notch, while higher order notch filters were just cascades of 2
nd

 order notch filters. 

So, by Occam’s razor, we focused just on a single 2
nd

 order filter. 
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The transfer function of a 2
nd

 order notch filter is a ratio of two 2
nd

 order polynomials of fre-

quency. Its numerator and denominator are each characterized by the roots of those polyno-

mials, called the zeroes and poles respectively. Being 2
nd

 order polynomials, there are two 

zeroes and two poles. To get a notch in the magnitude of the filter, the zeroes must be com-

plex (not real) and conjugates of each other and the magnitude of the imaginary part must be 

greater than the magnitude of the real part, while the poles can be either a complex conjugate 

pair or both be real. 

It is convenient to parameterize the zeroes and the poles in polar coordinates where angles are 

restricted to one quadrant (this also allows us to constrain the poles to be in the left half of the 

complex frequency plane, as required for system stability). To allow for any zeroes and poles 

meeting the above constraints (because we want to consider all possible 2
nd

 order filters that 

produce notches), we need to allow for both positive and negative square roots of −1 (that is, 

i ) when factorizing each of the polynomials. The sign of i gives the sign of the phase 

changes produced by the transfer function, so this is expressing sign ambiguity in the phases. 

If we knew the phases of the empirical transfer function above we would know exactly which 

transfer function to consider, but we do not.   

Hence, given any combination of two zeroes and two poles parameterized as above, there are 

in general four possible transfer functions. They were described above by two binary varia-

bles k and l, the sign signifiers, which respectively define the sign of the square roots of −1 in 

the numerator and denominator of the transfer function. Note that the process is that we start 

with zeroes and poles in one quadrant, then find the four associated transfer functions involv-

ing those poles and zeroes up to changes in sign of i. Of course, if we started with a given 

transfer function and factorized its two polynomials then it would have a unique combination 

of poles and zeroes.  

Note also that the notion of a zero or pole requires a specification of the factorization varia-

ble—otherwise we would not be sure what it is that, when equal to the zero or pole, makes 

the polynomial’s value zero. That specification is usually implicit. The factorization variable 

is usually a complex frequency, in which case the sign of the i in the complex frequency 

needs to be specified—because it is arbitrary, representing either sine or negative sine. Fur-

ther, there is no particular reason the zeroes and poles have to be with respect to the same fac-

torization variable, so we presumably have to allow them to differ. Thus there are a total of 

four combinations of factorization variables, different only in signs of i. 

We calculated the step response of a general transfer function of a 2
nd

 order filter from first 

principles: express the step input as a sum of sinusoids, note the effect of the transfer function 

on each input sinusoid to produce an output sinusoid at the same frequency, and sum the out-

put sinusoids to form the step response. The calculation of the step response was an algebra-

fest involving definite integrals from a reference work, but it was checked using numerical 

integration and then again by approximating the calculation using FFTs. In our examples we 

also confirmed the step response by checking it satisfied the linear differential equation from 

which the transfer function was derived. 

Of the four possible transfer functions for a given combination of two zeroes and two poles, 

two have causal step responses and the other two have non-causal step responses. Clearly the 
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causal step responses are possibilities for the Sun-Earth relationship, but what about the non-

casual ones? Their non-causality dies out exponentially with decreasing time, so simply de-

laying the step response by a few years by combining the notch filter with a delay filter 

makes the step response of the combined filter causal, to a good approximation. So presuma-

bly the non-causal step responses are also possibilities for the Sun-Earth relationship, so long 

as they are combined with a delay. 

As an example we looked at a simple RLC circuit that is known to act as a notch filter. We 

found its transfer function by solving the linear differential equation of the circuit when the 

input is a sinusoid. We then mapped that transfer function onto the form of the transfer func-

tion in our step-response calculation above, from which we obtained the step response—

which  was of course one of the causal ones (the circuit is real, so it is causal). 

For a second example we flipped the sign of time in the circuit equation in the first example, 

to give a similar but crucially different transfer function. Its step response was one of the non-

causal ones. By the way, because this simple series circuit is simpler than a general 2
nd

 order 

filter, i does not appear in the numerator of its transfer function when expressed in its sim-

plest form, so there are only two versions of the transfer function to within the signs of i—

and we did one example for each version. 

Appendix A Special Functions 

The following functions are used here but are not standard. 

A.1 Indicator function 
From the set of all propositions to 0 and 1: 

 proposition

1 the proposition is true

0 the proposition is false.
I


 


 (226) 

For example, for some integer N, 

  is even

8 if  is even
5 3

5 if  is odd.
N

N
I

N


  


 

A.2 Signum Function 
The signum function sgn (pronounced “signum”) gives the sign of its argument: 

 

1 0

( ) 0 0

1

sg

0.

n

x

x x

x




 
 

 (227) 

For example, sgn( 0.4) sgn( 10) 1      while sgn(0.7) sgn(24) 1  . 

A.3 Step Function 
The (unit) step function switches from zero to one when its argument becomes positive: 
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 (228) 

For example, step( 0.4) step( 10) 0     while step(0.7) step(24) 1  . 

A.4 Eta Function 
The eta function   (  is the Greek letter “eta”) is useful for taking care of the inevitable fac-

tors of two that arise when dealing with sinusoids: 

 
( )

1 if 0
2 2

2 if 0.

f
f

f

 


  

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  is simply the number of normal (that is, non-edge) frequencies in a context—here, because 

there is only one frequency variable and it is continuous, the only edge frequency is zero and 

  is either one or zero. We usually omit its frequency argument as understood and write “ ” 

rather than “ ( )f ” in formulae. 

A.5 Phase Function 
Arctan needs extending to be able to compute polar-coordinate angles, for which we use the 

phase function pha (pronounced “far”). It gives the angle on a plane, in radians in  0,2 , 

that the point ( , )x y  makes with the x-axis: 

  1

0( , ) tan modp 2ha xx y y x I 


    ,    ,x y . (230) 

If ( , )x y  is in the first quadrant, the phase function simplifies to 

  1pha( , ) tanx y y x . 

For example, pha(1,0) 0 , pha(1, 3) 3 , pha(0,1) 2 , and pha( 1,0) .   

A similar function is the two-argument arctangent function atan2, but its range is  ,  . 

Appendix B Acronyms 

LIS  Linear invariant system 

LPF  Low pass filter 

Appendix C Electrical Engineering 

Electrical engineers (EEs) have a lot of experience with systems, Fourier analysis, transfer 

functions, and step responses. This is the area of human endeavor that uses them explicitly 

and regularly, more than other areas. However EE’s methodology and experience is focused 

on causal systems, because a circuit, by its very existence, is casual. Assuming causality 

makes solving circuits a lot simpler.  

https://en.wikipedia.org/wiki/Atan2
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(By the way, the only method known to the author to find the step response of a 2
nd

 order 

notch filter without assuming causality is using Fourier analysis as above, which is much 

more complicated than the methods routinely used by EEs. It was only using this method that 

the non-causal step responses came to light. Note that the 2
nd

 order differential equation for 

the filter cannot be solved without first correctly guessing the form of the particular solution.)  

The most common and powerful tool EEs use to solve circuits in the frequency domain is the 

Laplace transform. This is a generalization of the Fourier transform from sinusoids to ex-

osoids (exponentially increasing or decreasing sinusoids, the product of an exponential 

growth factor and a sinusoid), but this requires that the transform be “one-sided”, meaning 

times before zero are omitted from the integrals (because otherwise the integrand would in-

clude exposoids increasing without limit as time decreased). The Laplace transform of a func-

tion :g   is 

  
0

( ) ( ) stg L s g t e dt



    (231) 

where  

 2s j i f        (232) 

is the complex frequency. The Laplace transform “assumes causality”, in that it ignores what 

happens at negative times: 

    
( ) 0

( )
crazy( ) 0

g t t
g g t

t t

 
   

 
. (233) 

In particular, the Laplace transform of a casual step response is identical to the Laplace trans-

form of a non-causal step response that is the same for non-negative times.  

Thus the Laplace transform cannot be used to detect non-causality. Instead we can use the 

Fourier transform because it is two sided—that is, takes function values over all time into ac-

count. Or we can solve circuit equations directly, but the circuit equations are linear differen-

tial equations and solving them is arduous—which is why EEs developed methods to avoid 

solving them directly from first principles. 

Ask an EE website (such as this) or use a tool like Matlab to find a step response from the 

transfer function, circuit values, or the zeroes and poles, and you will only get the causal an-

swers. These have been presumably calculated using formulas using the Laplace transform. 

Digital circuits are relevant is no much as they approximate analog circuits, which are rele-

vant because are described by the same simple linear differential equations as relationships 

often are in the natural world. However digital circuits are clocked, wherein the state of the 

circuit at each tick of the clock is computed from the state in the previous tick plus the change 

in input since the previous tick. With bazillions of ticks per second, such a circuit can be an 

excellent approximation of an analog filter. However, technically a digital circuit is not a LIS, 

because it is not invariant (though it is still linear). The output depends on when the input 

starts—any input that starts during the current clock cycle will produce the same output, be-

http://sim.okawa-denshi.jp/en/RLCbekeisan.htm
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cause the circuit does nothing until the next cycle begins. Digital circuits are necessarily cas-

ual, because they start in a zeroed state and there can be no output until the input begins. 
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